Skip to main content

Macrophage Development and Function

  • Protocol
  • First Online:
Tissue-Resident Macrophages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2713))

Abstract

Macrophages were first described over a hundred years ago. Throughout the years, they were shown to be essential players in their tissue-specific environment, performing various functions during homeostatic and disease conditions. Recent reports shed more light on their ontogeny as long-lived, self-maintained cells with embryonic origin in most tissues. They populate the different tissues early during development, where they help to establish and maintain homeostasis. In this chapter, the history of macrophages is discussed. Furthermore, macrophage ontogeny and core functions in the different tissues are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Metschnikoff E (1891) Lecture on phagocytosis and immunity. BMJ 1:213–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Metchnikov E (1883) Untersuchungen ueber die mesodermalen Phagocyten einiger Wirbeltiere. Biologisches Centralblatt 3:560–565

    Google Scholar 

  3. Arroyo Portilla C, Tomas J, Gorvel JP, Lelouard H (2021) From species to regional and local specialization of intestinal macrophages. Front Cell Dev Biol 8:1910

    Article  Google Scholar 

  4. Kierdorf K, Prinz M, Geissmann F, Gomez Perdiguero E (2015) Development and function of tissue resident macrophages in mice. Semin Immunol 27:369–378

    Article  CAS  PubMed  Google Scholar 

  5. Saraiva Camara NO, Braga TT (2022) Macrophages in the human body: a tissue level approach. Elsevier

    Google Scholar 

  6. van Furth R, Cohn ZA, Hirsch JG et al (1972) The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ 46:845–852

    PubMed  PubMed Central  Google Scholar 

  7. Bain CC, Bravo-Blas A, Scott CL et al (2014) Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol 15:929–937. https://doi.org/10.1038/ni.2967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Epelman S, Lavine KJ, Beaudin AE et al (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:91–104. https://doi.org/10.1016/j.immuni.2013.11.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Calderon B, Carrero JA, Ferris ST et al (2015) The pancreas anatomy conditions the origin and properties of resident macrophages. J Exp Med 212:1497–1512. https://doi.org/10.1084/jem.20150496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tamoutounour S, Guilliams M, MontananaSanchis F et al (2013) Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39:925–938. https://doi.org/10.1016/j.immuni.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  11. Ginhoux F, Guilliams M (2016) Tissue-resident macrophage ontogeny and homeostasis. Immunity 44:439–449. https://doi.org/10.1016/j.immuni.2016.02.024

    Article  CAS  PubMed  Google Scholar 

  12. Merad M, Manz MG, Karsunky H et al (2002) Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol 3:1135–1141. https://doi.org/10.1038/ni852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jenkins SJ, Ruckerl D, Cook PC et al (2011) Local macrophage proliferation, rather than recruitment from the blood, is a signature of T H2 inflammation. Science (1979) 332:1284–1288. https://doi.org/10.1126/science.1204351

    Article  CAS  Google Scholar 

  14. Jakubzick C, Gautier EL, Gibbings SL et al (2013) Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39:599–610. https://doi.org/10.1016/j.immuni.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  15. Hashimoto D, Chow A, Noizat C et al (2013) Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38:792–804. https://doi.org/10.1016/j.immuni.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  16. Ajami B, Bennett JL, Krieger C et al (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543. https://doi.org/10.1038/nn2014

    Article  CAS  PubMed  Google Scholar 

  17. Palis J, Robertson S, Kennedy M et al (1999) Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126:5073–5084

    Article  CAS  PubMed  Google Scholar 

  18. Ji RP, Phoon CKL, Aristizábal O et al (2003) Onset of cardiac function during early mouse embryogenesis coincides with entry of primitive erythroblasts into the embryo proper. Circ Res 92:133–135

    Article  CAS  PubMed  Google Scholar 

  19. McGrath KE, Koniski AD, Malik J, Palis J (2003) Circulation is established in a stepwise pattern in the mammalian embryo. Blood 101:1669–1676. https://doi.org/10.1182/blood-2002-08-2531

    Article  CAS  PubMed  Google Scholar 

  20. Gomez Perdiguero E, Klapproth K, Schulz C et al (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:547–551. https://doi.org/10.1038/nature13989

    Article  CAS  PubMed  Google Scholar 

  21. McGrath KE, Frame JM, Fegan KH et al (2015) Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep 11:1892–1904. https://doi.org/10.1016/j.celrep.2015.05.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mass E, Ballesteros I, Farlik M et al (2016) Specification of tissue-resident macrophages during organogenesis. Science (1979) 353:aaf4238. https://doi.org/10.1126/science.aaf4238

  23. Stremmel C, Schuchert R, Wagner F et al (2018) Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Commun 9:75. https://doi.org/10.1038/s41467-017-02492-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bertrand JY, Jalil A, Klaine M et al (2005) Three pathways to mature macrophages in the early mouse yolk sac. Blood 106:3004–3011. https://doi.org/10.1182/blood-2005-02-0461

    Article  CAS  PubMed  Google Scholar 

  25. Mukouyama YS, Chiba N, Mucenski ML et al (1999) Hematopoietic cells in cultures of the murine embryonic aorta-gonad-mesonephros region are induced by c-Myb. Curr Biol 9:833–836. https://doi.org/10.1016/S0960-9822(99)80368-6

    Article  CAS  PubMed  Google Scholar 

  26. Dege C, Fegan KH, Creamer JP et al (2020) Potently cytotoxic natural killer cells initially emerge from erythro-myeloid progenitors during mammalian development. Dev Cell 53:229–239.e7. https://doi.org/10.1016/j.devcel.2020.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guilliams M, De Kleer I, Henri S et al (2013) Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med 210:1977–1992. https://doi.org/10.1084/jem.20131199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hoeffel G, Chen J, Lavin Y et al (2015) C-Myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42:665–678. https://doi.org/10.1016/j.immuni.2015.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Medvinsky A, Dzierzak E (1996) Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86:897–906. https://doi.org/10.1016/S0092-8674(00)80165-8

    Article  CAS  PubMed  Google Scholar 

  30. Boisset JC, van Cappellen W, Andrieu-Soler C et al (2010) In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464:116–120. https://doi.org/10.1038/nature08764

    Article  CAS  PubMed  Google Scholar 

  31. Christensen JL, Wright DE, Wagers AJ, Weissman IL (2004) Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biol 2:e75. https://doi.org/10.1371/journal.pbio.0020075

    Article  PubMed  PubMed Central  Google Scholar 

  32. dos Cassado AA, D’Império Lima MR, Bortoluci KR (2015) Revisiting mouse peritoneal macrophages: heterogeneity, development, and function. Front Immunol 6:225. https://doi.org/10.3389/fimmu.2015.00225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chakarov S, Lim HY, Tan L et al (2019) Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363:eaau0964. https://doi.org/10.1126/science.aau0964

    Article  CAS  PubMed  Google Scholar 

  34. Cox N, Geissmann F (2020) Macrophage ontogeny in the control of adipose tissue biology. Curr Opin Immunol 62:1–8

    Article  CAS  PubMed  Google Scholar 

  35. Sierro F, Evrard M, Rizzetto S et al (2017) A liver capsular network of monocyte-derived macrophages restricts hepatic dissemination of intraperitoneal bacteria by neutrophil recruitment. Immunity 47:374–388.e6. https://doi.org/10.1016/j.immuni.2017.07.018

    Article  CAS  PubMed  Google Scholar 

  36. Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392–404. https://doi.org/10.1038/nri3671

    Article  CAS  PubMed  Google Scholar 

  37. McGrath KE, Frame JM, Palis J (2015) Early hematopoiesis and macrophage development. Semin Immunol 27:379–387

    Article  CAS  PubMed  Google Scholar 

  38. Migliaccio G, Migliaccio AR Petti S et al Human embryonic hemopoiesis Kinetics of progenitors and precursors underlying the yolk sac-+ liver transition. J Clin Invest 78:51–60

    Google Scholar 

  39. Ivanovs A, Rybtsov S, Welch L et al (2011) Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region. J Exp Med 208:2417–2427. https://doi.org/10.1084/jem.20111688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aorta-associated CD34+ hematopoietic cells in the early human embryo - PubMed. https://pubmed.ncbi.nlm.nih.gov/8547678/. Accessed 6 Jan 2023

  41. Bian Z, Gong Y, Huang T et al (2020) Deciphering human macrophage development at single-cell resolution. Nature 582:571–576. https://doi.org/10.1038/s41586-020-2316-7

    Article  CAS  PubMed  Google Scholar 

  42. Hoeksema MA, Glass CK (2019) Nature and nurture of tissue-specific macrophage phenotypes. Atherosclerosis 281:159–167

    Article  CAS  PubMed  Google Scholar 

  43. Gordon S, Plüddemann A (2017) Tissue macrophages: heterogeneity and functions. BMC Biol 15:53. https://doi.org/10.1186/s12915-017-0392-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mass E, Nimmerjahn F, Kierdorf K, Schlitzer A (2023) Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat Rev Immunol 2023:1–17. https://doi.org/10.1038/s41577-023-00848-y

    Article  CAS  Google Scholar 

  45. Gordon S (2007) The macrophage: past, present and future. Eur J Immunol 37:S9–S17. https://doi.org/10.1002/eji.200737638

    Article  CAS  PubMed  Google Scholar 

  46. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455. https://doi.org/10.1038/nature12034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li Q, Barres BA (2018) Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 18:225–242. https://doi.org/10.1038/nri.2017.125

    Article  CAS  PubMed  Google Scholar 

  48. Kierdorf K, Erny D, Goldmann T et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1-and Irf8-dependent pathways. Nat Neurosci 16:273–280. https://doi.org/10.1038/nn.3318

    Article  CAS  PubMed  Google Scholar 

  49. Cunningham CL, Martínez-Cerdeño V, Noctor SC (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 33:4216–4233. https://doi.org/10.1523/JNEUROSCI.3441-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Checchin D, Sennlaub F, Levavasseur E et al (2006) Potential role of microglia in retinal blood vessel formation. Invest Ophthalmol Vis Sci 47:3595–3602. https://doi.org/10.1167/iovs.05-1522

    Article  PubMed  Google Scholar 

  51. Fantin A, Vieira JM, Gestri G et al (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–840. https://doi.org/10.1182/blood-2009-12-257832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Squarzoni P, Oller G, Hoeffel G et al (2014) Microglia modulate wiring of the embryonic forebrain. Cell Rep 8:1271–1279. https://doi.org/10.1016/j.celrep.2014.07.042

    Article  CAS  PubMed  Google Scholar 

  53. Ueno M, Fujita Y, Tanaka T et al (2013) Layer v cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 16:543–551. https://doi.org/10.1038/nn.3358

    Article  CAS  PubMed  Google Scholar 

  54. Stevens B, Allen NJ, Vazquez LE et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178. https://doi.org/10.1016/j.cell.2007.10.036

    Article  CAS  PubMed  Google Scholar 

  55. Schafer DP, Lehrman EK, Kautzman AG et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705. https://doi.org/10.1016/j.neuron.2012.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stephan AH, Barres BA, Stevens B (2012) The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 35:369–389

    Article  CAS  PubMed  Google Scholar 

  57. Hoshiko M, Arnoux I, Avignone E et al (2012) Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex. J Neurosci 32:15106–15111. https://doi.org/10.1523/JNEUROSCI.1167-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li Y, Du XF, Liu CS et al (2012) Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell 23:1189–1202. https://doi.org/10.1016/j.devcel.2012.10.027

    Article  CAS  PubMed  Google Scholar 

  59. Safaiyan S, Kannaiyan N, Snaidero N et al (2016) Age-related myelin degradation burdens the clearance function of microglia during aging. Nat Neurosci 19:995–998. https://doi.org/10.1038/nn.4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ho MS (2019) Microglia in Parkinson’s disease. In: Advances in experimental medicine and biology. Springer, New York LLC, pp 335–353

    Google Scholar 

  61. Hansen DV, Hanson JE, Sheng M (2018) Microglia in Alzheimer’s disease. J Cell Biol 217:459–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sekar A, Bialas AR, de Rivera H et al (2016) Schizophrenia risk from complex variation of complement component 4. Nature 530:177–183. https://doi.org/10.1038/nature16549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Clarke BE, Patani R (2020) The microglial component of amyotrophic lateral sclerosis. Brain 143:3526–3539

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rademakers R, Baker M, Nicholson AM et al (2012) Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet 44:200–205. https://doi.org/10.1038/ng.1027

    Article  CAS  Google Scholar 

  65. Oosterhof N, Chang IJ, Karimiani EG et al (2019) Homozygous mutations in CSF1R cause a pediatric-onset leukoencephalopathy and can result in congenital absence of microglia. Am J Hum Genet 104:936–947. https://doi.org/10.1016/j.ajhg.2019.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mass E, Jacome-Galarza CE, Blank T et al (2017) A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease. Nature 549:389–393. https://doi.org/10.1038/nature23672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Palis J (2014) Primitive and definitive erythropoiesis in mammals. Front Physiol 5 JAN

    Google Scholar 

  68. Willekens FLA, Werre JM, Kruijt JK et al (2005) Liver Kupffer cells rapidly remove red blood cell-derived vesicles from the circulation by scavenger receptors. Blood 105:2141–2145. https://doi.org/10.1182/blood-2004-04-1578

    Article  CAS  PubMed  Google Scholar 

  69. Guilliams M, Scott CL (2022) Liver macrophages in health and disease. Immunity 55:1515–1529. https://doi.org/10.1016/j.immuni.2022.08.002

    Article  CAS  PubMed  Google Scholar 

  70. Wang Y, van der Tuin S, Tjeerdema N et al (2015) Plasma cholesteryl ester transfer protein is predominantly derived from Kupffer cells. Hepatology 62:1710–1722. https://doi.org/10.1002/hep.27985

    Article  CAS  PubMed  Google Scholar 

  71. Krenkel O, Tacke F (2017) Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol 17:306–321. https://doi.org/10.1038/nri.2017.11

    Article  CAS  PubMed  Google Scholar 

  72. Westphalen K, Gusarova GA, Islam MN et al (2014) Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506:503–506. https://doi.org/10.1038/nature12902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. MacLean JA, Xia W, Pinto CE et al (1996) Sequestration of inhaled particulate antigens by lung phagocytes: a mechanism for the effective inhibition of pulmonary cell-mediated immunity. Am J Pathol 148:657–666

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Goritzka M, Makris S, Kausar F et al (2015) Alveolar macrophage-derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes. J Exp Med 212:699–714. https://doi.org/10.1084/jem.20140825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mould KJ, Jackson ND, Henson PM et al (2019) Single cell RNA sequencing identifies unique inflammatory airspace macrophage subsets. JCI Insight 4. https://doi.org/10.1172/jci.insight.126556

  76. Suzuki T, Trapnell BC (2016) Pulmonary alveolar Proteinosis syndrome. Clin Chest Med 37:431–440

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chiaranunt P, Tai SL, Ngai L, Mortha A (2021) Beyond immunity: underappreciated functions of intestinal macrophages. Front Immunol 12:3866

    Article  Google Scholar 

  78. de Schepper S, Verheijden S, Aguilera-Lizarraga J et al (2018) Self-maintaining gut macrophages are essential for intestinal homeostasis. Cell 175:400–415.e13. https://doi.org/10.1016/j.cell.2018.07.048

    Article  CAS  PubMed  Google Scholar 

  79. Viola MF, Boeckxstaens G (2020) Intestinal resident macrophages: multitaskers of the gut. Neurogastroenterol Motil 32:e13843. https://doi.org/10.1111/nmo.13843

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bain CC, Schridde A (2018) Origin, differentiation, and function of intestinal macrophages. Front Immunol 9. https://doi.org/10.3389/fimmu.2018.02733

  81. Morhardt TL, Hayashi A, Ochi T et al (2019) IL-10 produced by macrophages regulates epithelial integrity in the small intestine. Sci Rep 9:1223. https://doi.org/10.1038/s41598-018-38125-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ye Z, Hu W, Wu B et al (2021) Predictive prenatal diagnosis for infantile-onset inflammatory bowel disease because of Interleukin-10 signalling defects. J Pediatr Gastroenterol Nutr 72:276–281. https://doi.org/10.1097/MPG.0000000000002937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hoffmann D, Sens J, Brennig S et al (2021) Genetic correction of IL-10RB deficiency reconstitutes anti-inflammatory regulation in iPSC-derived macrophages. J Pers Med 11:221. https://doi.org/10.3390/jpm11030221

    Article  PubMed  PubMed Central  Google Scholar 

  84. Redhu NS, Bakthavatchalu V, Conaway EA et al (2017) Macrophage dysfunction initiates colitis during weaning of infant mice lacking the interleukin-10 receptor. elife 6. https://doi.org/10.7554/eLife.27652

  85. Delfini M, Stakenborg N, Viola MF, Boeckxstaens G (2022) Macrophages in the gut: masters in multitasking. Immunity 55:1530–1548

    Article  CAS  PubMed  Google Scholar 

  86. Cox N, Crozet L, Holtman IR et al (2021) Diet-regulated production of PDGFcc by macrophages controls energy storage. Science (1979) 373:eabe9383. https://doi.org/10.1126/science.abe9383, 373

  87. Pridans C, Raper A, Davis GM et al (2018) Pleiotropic impacts of macrophage and microglial deficiency on development in rats with targeted mutation of the Csf1r locus. J Immunol 201:2683–2699. https://doi.org/10.4049/jimmunol.1701783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wei S, Lightwood D, Ladyman H et al (2005) Modulation of CSF-1-regulated post-natal development with anti-CSF-1 antibody. Immunobiology 210:109–119. https://doi.org/10.1016/j.imbio.2005.05.005

    Article  CAS  PubMed  Google Scholar 

  89. Chawla A, Boisvert WA, Lee CH et al (2001) A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7:161–171. https://doi.org/10.1016/S1097-2765(01)00164-2

    Article  CAS  PubMed  Google Scholar 

  90. Weisberg SP, McCann D, Desai M et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Investig 112:1796–1808. https://doi.org/10.1172/jci19246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cinti S, Mitchell G, Barbatelli G et al (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46:2347–2355. https://doi.org/10.1194/jlr.M500294-JLR200

    Article  CAS  PubMed  Google Scholar 

  92. Kanda H, Tateya S, Tamori Y et al (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Investig 116:1494–1505. https://doi.org/10.1172/JCI26498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Weisberg SP, Hunter D, Huber R et al (2006) CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Investig 116:115–124. https://doi.org/10.1172/JCI24335

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Makdissi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Makdissi, N. (2024). Macrophage Development and Function. In: Mass, E. (eds) Tissue-Resident Macrophages. Methods in Molecular Biology, vol 2713. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3437-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3437-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3436-3

  • Online ISBN: 978-1-0716-3437-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics