Skip to main content

Assessment of Endothelial Barrier Functions in Extra Embryonic Vasculature of Chick Embryo as an Alternative Model

  • Protocol
  • First Online:
Vascular Hyperpermeability

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2711))

Abstract

Vascular permeability, a tightly regulated process, is a direct measure of angiogenic and immune responses in the endothelium altered in several acute and chronic diseases such as sepsis, high-altitude pulmonary edema (HAPE), high-altitude cerebral edema (HACE), ischemia, and coronavirus disease 2019 (COVID-19) endotheliitis. Both endogenous and exogenous factors such as cytokines, chemokines, and hormones may affect vascular permeability. The conventional tools available for the measurement of vascular permeability in vitro and in vivo based on collagen-coated Transwell and dye-based spectrophotometric methods are indirect measures of permeability. In this chapter, we present our live in ovo protocols based on dextran-Texas red and avian chorioallantoic membrane assay developed using custom-made equipment to assess leakiness of endothelial cell barrier both in vitro and in vivo. Further, we validate this assay using different stressors such as ischemia and hypoxia known to affect endothelial barrier properties by potentiating actin stress fiber disorganization and disrupting the cell-cell junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, Buerk DG, Huang PL, Jain RK (2001) Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci U S A 98:2604–2609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Uilkhelm DL (1968) [Increased vascular permeability in acute inflammation]. Patol Fiziol Eksp Ter. 12:3–16

    Google Scholar 

  3. Wiener J, Lattes RG, Pearl JS (1969) Vascular permeability and leukocyte emigration in allograft rejection. Am J Pathol 55:295–327

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu R, Song X, Xu Y, Meng X (2000) Apoptosis of endothelial cells in alteration of microvascular permeability in lung during sepsis. Zhonghua Wai Ke Za Zhi 38:385–387

    CAS  PubMed  Google Scholar 

  5. Manohar M (1979) What causes the microvascular permeability change in high altitude pulmonary edema? Circ Res 44:873–874

    Article  CAS  PubMed  Google Scholar 

  6. Fox SE, Lameira FS, Rinker EB, Vander Heide RS (2020) Cardiac Endotheliitis and multisystem inflammatory syndrome after COVID-19. Ann Intern Med 173:1025

    Article  PubMed  Google Scholar 

  7. Mosleh W, Chen K, Pfau SE, Vashist A (2020) Endotheliitis and endothelial dysfunction in patients with COVID-19: its role in thrombosis and adverse outcomes. J Clin Med 9

    Google Scholar 

  8. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H (2020) Endothelial cell infection and endotheliitis in COVID-19. Lancet 395:1417–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Groeneveld AB, Tacx AN, Bossink AW, van Mierlo GJ, Hack CE (2003) Circulating inflammatory mediators predict shock and mortality in febrile patients with microbial infection. Clin Immunol 106:106–115

    Article  CAS  PubMed  Google Scholar 

  10. Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR, Vincent JL (2016) Sepsis and septic shock. Nat Rev Dis Primers 2:16045

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ebeigbe AB (1984) Vascular membrane permeability during hypoxia. Pharmacol Res Commun 16:351–358

    Article  CAS  PubMed  Google Scholar 

  12. Hu DL, Yu YX, Liang R, Zhou SY, Duan SL, Jiang ZY, Meng CY, Jiang W, Wang H, Sun YX, Fang LS. (2019) [Regulation of hypoxia inducible factor-1alpha on permeability of vascular endothelial cells and the mechanism]. Zhonghua Shao Shang Za Zhi 35:209–217

    Google Scholar 

  13. Siggaard-Andersen J, Petersen FB, Hansen TI, Mellemgaard K (1969) Vascular permeability and plasma volume changes during hypoxia and carbon monoxide exposure. Angiology 20:356–358

    Article  CAS  PubMed  Google Scholar 

  14. Flammer AJ, Anderson T, Celermajer DS, Creager MA, Deanfield J, Ganz P, Hamburg NM, Luscher TF, Shechter M, Taddei S, Vita JA, Lerman A (2012) The assessment of endothelial function: from research into clinical practice. Circulation 126:753–767

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bonetti PO, Lerman LO, Lerman A (2003) Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 23:168–175

    Article  CAS  PubMed  Google Scholar 

  16. Giannotta M, Trani M, Dejana E (2013) VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev Cell 26:441–454

    Article  CAS  PubMed  Google Scholar 

  17. Kavurma MM, Tan NY, Bennett MR (2008) Death receptors and their ligands in atherosclerosis. Arterioscler Thromb Vasc Biol 28:1694–1702

    Article  CAS  PubMed  Google Scholar 

  18. Hansson GK, Chao S, Schwartz SM, Reidy MA (1985) Aortic endothelial cell death and replication in normal and lipopolysaccharide-treated rats. Am J Pathol 121:123–127

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Stevens T, Garcia JG, Shasby DM, Bhattacharya J, Malik AB (2000) Mechanisms regulating endothelial cell barrier function. Am J Physiol Lung Cell Mol Physiol 279:L419–L422

    Article  CAS  PubMed  Google Scholar 

  20. Wojciak-Stothard B, Potempa S, Eichholtz T, Ridley AJ (2001) Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci 114:1343–1355

    Article  CAS  PubMed  Google Scholar 

  21. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  CAS  PubMed  Google Scholar 

  22. Machesky LM, Hall A (1996) Rho: a connection between membrane receptor signalling and the cytoskeleton. Trends Cell Biol 6:304–310

    Article  CAS  PubMed  Google Scholar 

  23. Tzima E (2006) Role of small GTPases in endothelial cytoskeletal dynamics and the shear stress response. Circ Res 98:176–185

    Article  CAS  PubMed  Google Scholar 

  24. Braga VM, Machesky LM, Hall A, Hotchin NA (1997) The small GTPases rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J Cell Biol 137:1421–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harrington EO, Shannon CJ, Morin N, Rowlett H, Murphy C, Lu Q (2005) PKCdelta regulates endothelial basal barrier function through modulation of RhoA GTPase activity. Exp Cell Res 308:407–421

    Article  CAS  PubMed  Google Scholar 

  26. Sanchez T, Skoura A, Wu MT, Casserly B, Harrington EO, Hla T (2007) Induction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN. Arterioscler Thromb Vasc Biol 27:1312–1318

    Article  CAS  PubMed  Google Scholar 

  27. Lu Q, Sakhatskyy P, Grinnell K, Newton J, Ortiz M, Wang Y, Sanchez-Esteban J, Harrington EO, Rounds S (2011) Cigarette smoke causes lung vascular barrier dysfunction via oxidative stress-mediated inhibition of RhoA and focal adhesion kinase. Am J Physiol Lung Cell Mol Physiol 301:L847–L857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harrington EO, Brunelle JL, Shannon CJ, Kim ES, Mennella K, Rounds S (2003) Role of protein kinase C isoforms in rat epididymal microvascular endothelial barrier function. Am J Respir Cell Mol Biol 28:626–636

    Article  CAS  PubMed  Google Scholar 

  29. Lu Q, Harrington EO, Hai CM, Newton J, Garber M, Hirase T, Rounds S (2004) Isoprenylcysteine carboxyl methyltransferase modulates endothelial monolayer permeability: involvement of RhoA carboxyl methylation. Circ Res 94:306–315

    Article  CAS  PubMed  Google Scholar 

  30. Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo. 1951. Dev Dyn 195:231–272

    Article  CAS  PubMed  Google Scholar 

  31. Majumder S, Ilayaraja M, Seerapu HR, Sinha S, Siamwala JH, Chatterjee S (2010) Chick embryo partial ischemia model: a new approach to study ischemia ex vivo. PLoS One 5:e10524

    Article  PubMed  PubMed Central  Google Scholar 

  32. Prozialeck WC, Edwards JR, Woods JM (2006) The vascular endothelium as a target of cadmium toxicity. Life Sci 79:1493–1506

    Article  CAS  PubMed  Google Scholar 

  33. Nagarajan S, Rajendran S, Saran U, Priya MK, Swaminathan A, Siamwala JH, Sinha S, Veeriah V, Sonar P, Jadhav V, Jaffar Ali BM, Chatterjee S (2013) Nitric oxide protects endothelium from cadmium mediated leakiness. Cell Biol Int 37:495–506

    Article  CAS  PubMed  Google Scholar 

  34. Saran U, Mani KP, Balaguru UM, Swaminathan A, Nagarajan S, Dharmarajan AM, Chatterjee S (2017) sFRP4 signalling of apoptosis and angiostasis uses nitric oxide-cGMP-permeability axis of endothelium. Nitric Oxide 66:30–42

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Rhode Island Foundation grant (20190594), Alzheimer administrative supplement to COBRE CPVB (P20 GM103652), and TEAM UTRA grant from Brown University to JHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamila Siamwala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Siamwala, J., Swaminathan, A., Chatterjee, S. (2024). Assessment of Endothelial Barrier Functions in Extra Embryonic Vasculature of Chick Embryo as an Alternative Model. In: Tharakan, B. (eds) Vascular Hyperpermeability. Methods in Molecular Biology, vol 2711. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3429-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3429-5_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3428-8

  • Online ISBN: 978-1-0716-3429-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics