Skip to main content

Construction of Synthetic Antibody Phage Display Libraries

  • Protocol
  • First Online:
Phage Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2702))

Abstract

Synthetic antibody libraries provide a vast resource of renewable antibody reagents that can rival natural antibodies and be rapidly isolated through controlled in vitro selections. Use of highly optimized human frameworks enables the incorporation of defined diversity at positions that are most likely to contribute to antigen recognition. This protocol describes the construction of synthetic antibody libraries based on a single engineered human autonomous variable heavy domain scaffold with diversity in all three complementarity-determining regions. The resulting libraries can be used to generate recombinant domain antibodies targeting a wide range of protein antigens using phage display. Furthermore, analogous methods can be used to construct antibody libraries based on larger antibody fragments or second-generation libraries aimed to fine-tune antibody characteristics including affinity, specificity, and manufacturability. The procedures rely on standard reagents and equipment available in most molecular biology laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Castelli MS, McGonigle P, Hornby PJ (2019) The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol Res Perspect 7(6):e00535. https://doi.org/10.1002/prp2.535

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kaplon H, Chenoweth A, Crescioli S, Reichert JM (2022) Antibodies to watch in 2022. MAbs 14(1):2014296. https://doi.org/10.1080/19420862.2021.2014296

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, Wu HC (2020) Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 27(1):1. https://doi.org/10.1186/s12929-019-0592-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497

    Article  CAS  PubMed  Google Scholar 

  5. Tomszak F, Weber S, Zantow J, Schirrmann T, Hust M, Frenzel A (2016) Selection of recombinant human antibodies. Adv Exp Med Biol 917:23–54. https://doi.org/10.1007/978-3-319-32805-8_3

    Article  CAS  PubMed  Google Scholar 

  6. Bradbury ARM, Dubel S, Knappik A, Pluckthun A (2021) Animal- versus in vitro-derived antibodies: avoiding the extremes. MAbs 13(1):1950265. https://doi.org/10.1080/19420862.2021.1950265

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pedrioli A, Oxenius A (2021) Single B cell technologies for monoclonal antibody discovery. Trends Immunol 42(12):1143–1158. https://doi.org/10.1016/j.it.2021.10.008

    Article  CAS  PubMed  Google Scholar 

  8. Miersch S, Li Z, Hanna R, McLaughlin ME, Hornsby M, Matsuguchi T, Paduch M, Saaf A, Wells J, Koide S, Kossiakoff A, Sidhu SS (2015) Scalable high throughput selection from phage-displayed synthetic antibody libraries. J Vis Exp 95:51492. https://doi.org/10.3791/51492

    Article  CAS  Google Scholar 

  9. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317

    Article  CAS  PubMed  Google Scholar 

  10. Huse WD, Sastry L, Iverson SA, Kang AS, Alting-Mees M, Burton DR, Benkovic SJ, Lerner RA (1989) Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246(4935):1275–1281

    Article  CAS  PubMed  Google Scholar 

  11. McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348(6301):552–554. https://doi.org/10.1038/348552a0

    Article  CAS  PubMed  Google Scholar 

  12. Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM (2020) Phage display derived monoclonal antibodies: from bench to bedside. Front Immunol 11:1986. https://doi.org/10.3389/fimmu.2020.01986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bradbury AR, Sidhu S, Dubel S, McCafferty J (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29(3):245–254. https://doi.org/10.1038/nbt.1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carter PJ, Rajpal A (2022) Designing antibodies as therapeutics. Cell 185(15):2789–2805. https://doi.org/10.1016/j.cell.2022.05.029

    Article  CAS  PubMed  Google Scholar 

  15. Ledsgaard L, Ljungars A, Rimbault C, Sorensen CV, Tulika T, Wade J, Wouters Y, McCafferty J, Laustsen AH (2022) Advances in antibody phage display technology. Drug Discov Today 27(8):2151–2169. https://doi.org/10.1016/j.drudis.2022.05.002

    Article  CAS  PubMed  Google Scholar 

  16. Bradbury A, Pluckthun A (2015) Reproducibility: standardize antibodies used in research. Nature 518(7537):27–29. https://doi.org/10.1038/518027a

    Article  CAS  PubMed  Google Scholar 

  17. Gray A, Bradbury ARM, Knappik A, Pluckthun A, Borrebaeck CAK, Dubel S (2020) Animal-free alternatives and the antibody iceberg. Nat Biotechnol 38(11):1234–1239. https://doi.org/10.1038/s41587-020-0687-9

    Article  CAS  PubMed  Google Scholar 

  18. Voskuil JLA, Bandrowski A, Begley CG, Bradbury ARM, Chalmers AD, Gomes AV, Hardcastle T, Lund-Johansen F, Pluckthun A, Roncador G, Solache A, Taussig MJ, Trimmer JS, Williams C, Goodman SL (2020) The antibody society’s antibody validation webinar series. MAbs 12(1):1794421. https://doi.org/10.1080/19420862.2020.1794421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rouet R, Dudgeon K, Christie M, Langley D, Christ D (2015) Fully human VH single domains that rival the stability and cleft recognition of camelid antibodies. J Biol Chem 290(19):11905–11917. https://doi.org/10.1074/jbc.M114.614842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sidhu SS, Fellouse FA (2006) Synthetic therapeutic antibodies. Nat Chem Biol 2(12):682–688. https://doi.org/10.1038/nchembio843

    Article  CAS  PubMed  Google Scholar 

  21. Bond CJ, Wiesmann C, Marsters JC Jr, Sidhu SS (2005) A structure-based database of antibody variable domain diversity. J Mol Biol 348(3):699–709. https://doi.org/10.1016/j.jmb.2005.02.063

    Article  CAS  PubMed  Google Scholar 

  22. Fellouse FA, Li B, Compaan DM, Peden AA, Hymowitz SG, Sidhu SS (2005) Molecular recognition by a binary code. J Mol Biol 348(5):1153–1162. https://doi.org/10.1016/j.jmb.2005.03.041

    Article  CAS  PubMed  Google Scholar 

  23. Fellouse FA, Wiesmann C, Sidhu SS (2004) Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition. Proc Natl Acad Sci U S A 101(34):12467–12472. https://doi.org/10.1073/pnas.0401786101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Holt LJ, Herring C, Jespers LS, Woolven BP, Tomlinson IM (2003) Domain antibodies: proteins for therapy. Trends Biotechnol 21(11):484–490. https://doi.org/10.1016/j.tibtech.2003.08.007

    Article  CAS  PubMed  Google Scholar 

  25. Nilvebrant J, Tessier PM, Sidhu SS (2016) Engineered autonomous human variable domains. Curr Pharm Des 22(43):6527–6537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moutel S, Bery N, Bernard V, Keller L, Lemesre E, de Marco A, Ligat L, Rain JC, Favre G, Olichon A, Perez F (2016) NaLi-H1: a universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. elife 5. https://doi.org/10.7554/eLife.16228

  27. Yan J, Li G, Hu Y, Ou W, Wan Y (2014) Construction of a synthetic phage-displayed Nanobody library with CDR3 regions randomized by trinucleotide cassettes for diagnostic applications. J Transl Med 12:343. https://doi.org/10.1186/s12967-014-0343-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zimmermann I, Egloff P, Hutter CA, Arnold FM, Stohler P, Bocquet N, Hug MN, Huber S, Siegrist M, Hetemann L, Gera J, Gmur S, Spies P, Gygax D, Geertsma ER, Dawson RJ, Seeger MA (2018) Synthetic single domain antibodies for the conformational trapping of membrane proteins. elife 7. https://doi.org/10.7554/eLife.34317

  29. Fellouse FA, Sidhu S (2013) Making antibodies in bacteria. In: Howard GC, Kase MR (eds) Making and using antibodies a practical handbook. CRC Press, pp 151–172

    Google Scholar 

  30. Nilvebrant J, Sidhu SS (2018) Construction of synthetic antibody phage-display libraries. Methods Mol Biol 1701:45–60. https://doi.org/10.1007/978-1-4939-7447-4_3

    Article  CAS  PubMed  Google Scholar 

  31. Barthelemy PA, Raab H, Appleton BA, Bond CJ, Wu P, Wiesmann C, Sidhu SS (2008) Comprehensive analysis of the factors contributing to the stability and solubility of autonomous human VH domains. J Biol Chem 283(6):3639–3654. https://doi.org/10.1074/jbc.M708536200

    Article  CAS  PubMed  Google Scholar 

  32. Ma X, Barthelemy PA, Rouge L, Wiesmann C, Sidhu SS (2013) Design of synthetic autonomous VH domain libraries and structural analysis of a VH domain bound to vascular endothelial growth factor. J Mol Biol 425(12):2247–2259. https://doi.org/10.1016/j.jmb.2013.03.020

    Article  CAS  PubMed  Google Scholar 

  33. Nilvebrant J, Ereno-Orbea J, Gorelik M, Julian MC, Tessier PM, Julien JP, Sidhu SS (2021) Systematic engineering of optimized autonomous heavy-chain variable domains. J Mol Biol 433(21):167241. https://doi.org/10.1016/j.jmb.2021.167241

    Article  CAS  PubMed  Google Scholar 

  34. Tonikian R, Sidhu SS (2012) Selecting and purifying autonomous human variable heavy (VH) domains. Methods Mol Biol 911:327–353. https://doi.org/10.1007/978-1-61779-968-6_20

    Article  CAS  PubMed  Google Scholar 

  35. Lee CV, Liang WC, Dennis MS, Eigenbrot C, Sidhu SS, Fuh G (2004) High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold. J Mol Biol 340(5):1073–1093. https://doi.org/10.1016/j.jmb.2004.05.051

    Article  CAS  PubMed  Google Scholar 

  36. Persson H, Ye W, Wernimont A, Adams JJ, Koide A, Koide S, Lam R, Sidhu SS (2013) CDR-H3 diversity is not required for antigen recognition by synthetic antibodies. J Mol Biol 425(4):803–811. https://doi.org/10.1016/j.jmb.2012.11.037

    Article  CAS  PubMed  Google Scholar 

  37. Sidhu SS, Li B, Chen Y, Fellouse FA, Eigenbrot C, Fuh G (2004) Phage-displayed antibody libraries of synthetic heavy chain complementarity determining regions. J Mol Biol 338(2):299–310. https://doi.org/10.1016/j.jmb.2004.02.050

    Article  CAS  PubMed  Google Scholar 

  38. Ernst A, Avvakumov G, Tong J, Fan Y, Zhao Y, Alberts P, Persaud A, Walker JR, Neculai AM, Neculai D, Vorobyov A, Garg P, Beatty L, Chan PK, Juang YC, Landry MC, Yeh C, Zeqiraj E, Karamboulas K, Allali-Hassani A, Vedadi M, Tyers M, Moffat J, Sicheri F, Pelletier L, Durocher D, Raught B, Rotin D, Yang J, Moran MF, Dhe-Paganon S, Sidhu SS (2013) A strategy for modulation of enzymes in the ubiquitin system. Science 339(6119):590–595. https://doi.org/10.1126/science.1230161

    Article  CAS  PubMed  Google Scholar 

  39. McLaughlin ME, Sidhu SS (2013) Engineering and analysis of peptide-recognition domain specificities by phage display and deep sequencing. Methods Enzymol 523:327–349. https://doi.org/10.1016/B978-0-12-394292-0.00015-1

    Article  CAS  PubMed  Google Scholar 

  40. Adams JJ, Nelson B, Sidhu SS (2014) Recombinant genetic libraries and human monoclonal antibodies. Methods Mol Biol 1060:149–170. https://doi.org/10.1007/978-1-62703-586-6_9

    Article  CAS  PubMed  Google Scholar 

  41. Kunkel TA, Roberts JD, Zakour RA (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol 154:367–382

    Article  CAS  PubMed  Google Scholar 

  42. Lechner RL, Engler MJ, Richardson CC (1983) Characterization of strand displacement synthesis catalyzed by bacteriophage T7 DNA polymerase. J Biol Chem 258(18):11174–11184

    Article  CAS  PubMed  Google Scholar 

  43. Sidhu SS, Lowman HB, Cunningham BC, Wells JA (2000) Phage display for selection of novel binding peptides. Methods Enzymol 328:333–363

    Article  CAS  PubMed  Google Scholar 

  44. Chen G, Sidhu SS (2014) Design and generation of synthetic antibody libraries for phage display. Methods Mol Biol 1131:113–131. https://doi.org/10.1007/978-1-62703-992-5_8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Members of the Sidhu lab are acknowledged for input, particularly Alia Pavlenco and Wei Ye. We thank Frederic Fellouse for assistance with Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Nilvebrant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Giang, K.A., Sidhu, S.S., Nilvebrant, J. (2023). Construction of Synthetic Antibody Phage Display Libraries. In: Hust, M., Lim, T.S. (eds) Phage Display. Methods in Molecular Biology, vol 2702. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3381-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3381-6_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3380-9

  • Online ISBN: 978-1-0716-3381-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics