Skip to main content

Epivolve: A Protocol for Site-Directed Antibodies

  • Protocol
  • First Online:
Phage Display

Abstract

Researchers can often successfully generate antibodies to predicted epitopes. Especially when the epitopes are on the surface of a protein or in a hydrophilic loop. But it is difficult to direct recombinant antibodies to bind either to- or near a specific amino acid on a protein or peptide. We have developed a unique immune-targeting strategy, that we call “Epivolve,” that enables us to make site-specific antibodies (Abs). Epivolve technology leverages a highly immunogenic modified amino acid that acts as a “pseudo-hapten” immuno-target and takes advantage of Ab affinity maturation technologies to make high-affinity site-specific antibodies. Epivolve functions by the evolution of an Ab paratope to either synonymous or especially non-synonymous amino acid (aa) binding. Here we describe the use of Epivolve technology in phage display and the protocols for developing site-specific antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fuller EP, O'Neill RJ, Weiner MP (2022) Derivation of splice junction-specific antibodies using a unique hapten targeting strategy and directed evolution. New Biotechnol 71:1–10. https://doi.org/10.1016/j.nbt.2022.06.003

    Article  CAS  Google Scholar 

  2. Holland EG, Buhr DL, Acca FE et al (2013) AXM mutagenesis: an efficient means for the production of libraries for directed evolution of proteins. J Immunol Methods 394(1-2):55–61. https://doi.org/10.1016/j.jim.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  3. Batonick M, Holland EG, Busygina V et al (2016) Platform for high-throughput antibody selection using synthetically-designed antibody libraries. New Biotechnol 33(5 Pt A):565–573. https://doi.org/10.1016/j.nbt.2015.11.005

    Article  CAS  Google Scholar 

  4. Van Deventer JA, Wittrup KD (2014) Yeast surface display for antibody isolation: library construction, library screening, and affinity maturation. Methods Mol Biol (Clifton, N.J.) 1131:151–181. https://doi.org/10.1007/978-1-62703-992-5_10

    Article  CAS  Google Scholar 

  5. Zahnd C, Amstutz P, Plückthun A (2007) Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat Methods 4(3):269–279. https://doi.org/10.1038/nmeth1003

    Article  CAS  PubMed  Google Scholar 

  6. Novotny CP, Lavin K (1971) Some effects of temperature on the growth of F pili. J Bacteriol 107(3):671–682. https://doi.org/10.1128/jb.107.3.671-682.1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marks JD, Hoogenboom HR, Bonnert TP et al (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222(3):581–597. https://doi.org/10.1016/0022-2836(91)90498-u

    Article  CAS  PubMed  Google Scholar 

  8. Hoogenboom HR, Griffiths AD, Johnson KS et al (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res 19(15):4133–4137. https://doi.org/10.1093/nar/19.15.4133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sheets MD, Amersdorfer P, Finnern R et al (1998) Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci U S A 95(11):6157–6162. https://doi.org/10.1073/pnas.95.11.6157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vaughan TJ, Williams AJ, Pritchard K et al (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14(3):309–314. https://doi.org/10.1038/nbt0396-309

    Article  CAS  PubMed  Google Scholar 

  11. de Haard HJ, van Neer N, Reurs A et al (1999) A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 274(26):18218–18230. https://doi.org/10.1074/jbc.274.26.18218

    Article  PubMed  Google Scholar 

  12. Haidaris CG, Malone J, Sherrill LA et al (2001) Recombinant human antibody single chain variable fragments reactive with Candida albicans surface antigens. J Immunol Methods 257(1–2):185–202. https://doi.org/10.1016/s0022-1759(01)00463-x

    Article  CAS  PubMed  Google Scholar 

  13. Knappik A, Ge L, Honegger A et al (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 296(1):57–86. https://doi.org/10.1006/jmbi.1999.3444

    Article  CAS  PubMed  Google Scholar 

  14. Sidhu SS, Li B, Chen Y et al (2004) Phage-displayed antibody libraries of synthetic heavy chain complementarity determining regions. J Mol Biol 338(2):299–310. https://doi.org/10.1016/j.jmb.2004.02.050

    Article  CAS  PubMed  Google Scholar 

  15. Rauchenberger R, Borges E, Thomassen-Wolf E et al (2003) Human combinatorial Fab library yielding specific and functional antibodies against the human fibroblast growth factor receptor 3. J Biol Chem 278(40):38194–38205. https://doi.org/10.1074/jbc.M303164200

    Article  CAS  PubMed  Google Scholar 

  16. Nelson B, Sidhu SS (2012) Synthetic antibody libraries. Methods Mol Biol (Clifton, N.J.) 899:27–41. https://doi.org/10.1007/978-1-61779-921-1_2

    Article  CAS  Google Scholar 

  17. Strachan G, McElhiney J, Drever MR et al (2002) Rapid selection of anti-hapten antibodies isolated from synthetic and semi-synthetic antibody phage display libraries expressed in Escherichia coli. FEMS Microbiol Lett 210(2):257–261. https://doi.org/10.1111/j.1574-6968.2002.tb11190.x

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Q, Buhr D, Gunter C et al (2018) Rational library design by functional CDR resampling. New Biotechnol 45:89–97. https://doi.org/10.1016/j.nbt.2017.12.005

    Article  CAS  Google Scholar 

  19. Kiss MM, Babineau EG, Bonatsakis M et al (2011) Phage ESCape: an emulsion-based approach for the selection of recombinant phage display antibodies. J Immunol Methods 367(1–2):17–26. https://doi.org/10.1016/j.jim.2010.09.034

    Article  CAS  PubMed  Google Scholar 

  20. Nikiforov TT, Rendle RB, Kotewicz ML et al (1994) The use of phosphorothioate primers and exonuclease hydrolysis for the preparation of single-stranded PCR products and their detection by solid-phase hybridization. PCR Methods Appl 3(5):285–291. https://doi.org/10.1101/gr.3.5.285

    Article  CAS  PubMed  Google Scholar 

  21. Kunkel TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A 82(2):488–492. https://doi.org/10.1073/pnas.82.2.488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scholle MD, Kehoe JW, Kay BK (2005) Efficient construction of a large collection of phage-displayed combinatorial peptide libraries. Comb Chem High Throughput Screen 8(6):545–551. https://doi.org/10.2174/1386207054867337

    Article  CAS  PubMed  Google Scholar 

  23. Huang R, Fang P, Kay BK (2012) Improvements to the Kunkel mutagenesis protocol for constructing primary and secondary phage-display libraries. Methods (San Diego, Calif.) 58(1):10–17. https://doi.org/10.1016/j.ymeth.2012.08.008

    Article  CAS  PubMed  Google Scholar 

  24. Cadwell RC, Joyce GF (1994) Mutagenic PCR. PCR Methods Appl 3(6):S136–S140. https://doi.org/10.1101/gr.3.6.s136

    Article  CAS  PubMed  Google Scholar 

  25. Jones KS, Chapman AE, Driscoll HA et al (2022) MILKSHAKE: novel validation method for antibodies to post-translationally modified targets by surrogate Western blot. BioTechniques 72(1):11–20. https://doi.org/10.2144/btn-2021-0078

    Article  CAS  PubMed  Google Scholar 

  26. Ferguson FM, Mendez MQ, Acca EF et al (this volume) Validation and the determination of antibody bioactivity using MILKSHAKE and sundae protocols. In: Phage display: methods and protocols. Springer, New York

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Brian K. Kay for insightful comments and discussion. This research was funded by NIH Appl. ID 1R43GM146473-01 and NIH Appl. ID 1R44AI177126-01.

Patent protection for the Epivolve technology has been submitted for Abbratech Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, X. et al. (2023). Epivolve: A Protocol for Site-Directed Antibodies. In: Hust, M., Lim, T.S. (eds) Phage Display. Methods in Molecular Biology, vol 2702. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3381-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3381-6_29

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3380-9

  • Online ISBN: 978-1-0716-3381-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics