Skip to main content

Protein Extraction and Purification by Differential Solubilization

  • Protocol
  • First Online:
Protein Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2699))

  • 1484 Accesses

Abstract

The preparation of purified soluble proteins for biochemical studies is essential and the solubility of a protein of interest in various media is central to this process. Selectively altering the solubility of a protein is a rapid and economical step in protein purification and is based on exploiting the inherent physicochemical properties of a polypeptide. Precipitation of proteins, released from cells upon lysis, is often used to concentrate a protein of interest before further purification steps (e.g., ion exchange chromatography, size exclusion chromatography etc).

Recombinant proteins may be expressed in host cells as insoluble inclusion bodies due to various influences during overexpression. Such inclusion bodies can often be solubilized to be reconstituted as functional, correctly folded proteins.

In this chapter, we examine strategies for extraction/precipitation/solubilization of proteins for protein purification. We also present bioinformatic tools to aid in understanding a protein’s propensity to aggregate/solubilize that will be a useful starting point for the development of protein extraction, precipitation, and selective re-solubilization procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. O’Fágáin C (1997) Protein stability and its measurement. In: O’Fágáin C (ed) Stabilising protein function. Springer Press, Berlin, pp 69–75

    Google Scholar 

  2. Pucci F, Rooman M (2017) Physical and molecular bases of protein thermal stability and cold adaptation. Curr Opin Struct Biol 42:117–128

    Article  CAS  PubMed  Google Scholar 

  3. Chen J, Zheng S, Zhao H et al (2021) Structure-aware protein solubility prediction from sequence through graph convolutional network and predicted contact map. J Cheminform 13:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Habibi N, Hashim SZM, Norouzi A, Samian MR (2014) A review of machine learning methods to predict the solubility of overexpressed recombinant proteins in Escherichia coli. BMC Bioinformatics 15:134

    Article  PubMed  PubMed Central  Google Scholar 

  5. Peach M, Marsh N, Miskiewicz EI, MacPhee DJ (2015) Solubilization of proteins: the importance of lysis buffer choice. Methods Mol Biol 1312:49–60

    Article  PubMed  Google Scholar 

  6. Cordwell SJ (2008) Sequential extraction of proteins by chemical reagents. Methods Mol Biol 424:139–146

    Article  CAS  PubMed  Google Scholar 

  7. Hawkins OP, Jahromi CPT, Gulamhussein AA, Nestorow S, Bahra T, Shelton C, Owusu-Mensah QK, Mohiddin N, O’Rourke H, Ajmal M, Byrnes K, Khan M, Nahar NN, Lim A, Harris C, Healy H, Hasan SW, Ahmed A, Evans L, Vaitsopoulou A, Akram A, Williams C, Binding J, Thandi RK, Joby A, Guest A, Tariq MZ, Rasool F, Cavanagh L, Kang S, Asparuhov B, Jestin A, Dafforn TR, Simms J, Bill RM, Goddard AD, Rothnie AJ (2021) Membrane protein extraction and purification using partially-esterified SMA polymers. Biochim Biophys Acta Biomembr 1863(12):183758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee SC, Knowles TJ, Postis VL, Jamshad M, Parslow RA, Lin YP, Goldman A, Sridhar P, Overduin M, Muench SP, Dafforn TR (2016) A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat Protoc 11(7):1149–1162

    Article  CAS  PubMed  Google Scholar 

  9. Wingfield P (1998) Protein precipitation using ammonium sulfate. Curr Protoc Protein Sci 13(1):A.3F.1–A.3F.8

    Article  Google Scholar 

  10. Hermann C, Giddey AD, Nel AJM, Soares NC, Blackburn JM (2019) Cell wall enrichment unveils proteomic changes in the cell wall during treatment of Mycobacterium smegmatis with sub-lethal concentrations of rifampicin. J Proteomics 191:166–179

    Article  CAS  PubMed  Google Scholar 

  11. Ramos Y, García Y, Llopiz A, Castellanos-Serra L (2008) Selectivity of bacterial proteome fractionation based on differential solubility: a mass spectrometry evaluation. Anal Biochem 377:134–140

    Article  CAS  PubMed  Google Scholar 

  12. Leimgruber RM (2005) Extraction and solubilisation of proteins for proteomic studies. In: Walker JM (ed) The proteomics protocols handbook. Humana, Totowa, pp 1–18

    Google Scholar 

  13. Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK (2015) Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact 14:41

    Article  PubMed  PubMed Central  Google Scholar 

  14. Braham SA, Siar EH, Arana-Peña S, Bavandi H, Carballares D, Morellon-Sterling R, de Andrades D, Kornecki JF, Fernandez-Lafuente R (2021) Positive effect of glycerol on the stability of immobilized enzymes: is it a universal fact? Process Biochem 102:108–121

    Article  CAS  Google Scholar 

  15. Villalobos A, Ness JE, Gustafsson C, Minshull J, Govindarajan S (2006) Gene Designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics 7:285

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xuguang L et al (2019) Choosing appropriate lysis buffers for protein extraction from acidotic mouse skeletal muscles. Chin J Tissue Eng Res 23(14):2228

    Google Scholar 

  17. Feliu JX, Cubarsi R, Villaverde A (1998) Optimized release of recombinant proteins by ultrasonication of E. coli cells. Biotechnol Bioeng 58:536–540

    Article  CAS  PubMed  Google Scholar 

  18. Haberl Meglič S, Janež N, Peterka M, Flisar K, Kotnik T, Miklavčič D (2020) Evaluation and optimization of protein extraction from E. coli by electroporation. Front Bioeng Biotechnol 8:543187

    Article  PubMed  PubMed Central  Google Scholar 

  19. Balasundaram B, Sachdeva S, Bracewell DG (2011) Dual salt precipitation for the recovery of a recombinant protein from Escherichia coli. Biotechnol Prog 27:1306–1314

    Article  CAS  PubMed  Google Scholar 

  20. Scopes RK (1994) Separation by precipitation. In: Protein purification, Springer advanced texts in chemistry. Springer, New York

    Chapter  Google Scholar 

  21. Chew KW, Ling TC, Show PL (2018) Recent developments and applications of three-phase partitioning for the recovery of proteins. Sep Purif Rev 48:52–64

    Article  Google Scholar 

  22. Gagaoua M, Hafid K (2016) Three phase partitioning system, an emerging non-chromatographic tool for proteolytic enzymes recovery and purification. Biosens J 5(1):100134

    Article  Google Scholar 

  23. Chia SR, Mak KY, Khaw YJ, Suhaidi N, Chew KW, Show PL (2019) An efficient and rapid method to extract and purify protein – Liquid Triphasic Flotation system. Bioresour Technol 294:122158

    Article  CAS  PubMed  Google Scholar 

  24. Chew KW, Chia SR, Lee SY, Zhu L, Show PL (2019) Enhanced microalgal protein extraction and purification using sustainable microwave-assisted multiphase partitioning technique. Chem Eng 367:1–8

    Article  CAS  Google Scholar 

  25. Goldring JPD (2019) Concentrating proteins by salt, polyethylene glycol, solvent, SDS precipitation, three-phase partitioning, dialysis, centrifugation, ultrafiltration, lyophilization, affinity chromatography, immunoprecipitation or increased temperature for protein isolation, drug interaction, and proteomic and peptidomic evaluation. Methods Mol Biol 1855:41–59

    Article  CAS  PubMed  Google Scholar 

  26. Lindwall G, Chau M-F, Gardner SR, Kohlstaedt LA (2000) A sparse matrix approach to the solubilization of overexpressed proteins. Protein Eng 13:67–71

    Article  CAS  PubMed  Google Scholar 

  27. Hashemzadeh MS, Mohammadi M, Ghaleh HEG, Sharti M, Choopani A, Panda AK (2021) Expression, solubilization, refolding and final purification of recombinant proteins as expressed in the form of “classical inclusion bodies” in E. coli. Protein Pept Lett 28(2):122–130

    Article  CAS  PubMed  Google Scholar 

  28. Tsumoto K, Ejima D, Kumagai I, Arakawa T (2003) Practical considerations in refolding proteins from inclusion bodies. Protein Expr Purif 28:1

    Article  CAS  PubMed  Google Scholar 

  29. Bhatwa A, Wang W, Hassan YI, Abraham N, Li XZ, Zhou T (2021) Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Front Bioeng Biotechnol 9:630551

    Article  PubMed  PubMed Central  Google Scholar 

  30. Singhvi P, Verma J, Panwar N, Wani TQ, Singh A, Qudratullah M, Chakraborty A, Saneja A, Sarkar DP, Panda AK (2021) Molecular attributes associated with refolding of inclusion body proteins using the freeze-thaw method. Front Microbiol 12:618559

    Article  PubMed  PubMed Central  Google Scholar 

  31. Singhvi P, Saneja A, Srichandan S, Panda AK (2020) Bacterial inclusion bodies: a treasure trove of bioactive proteins. Trends Biotechnol 38(5):474–486

    Article  CAS  PubMed  Google Scholar 

  32. Takalloo Z, Nikkhah M, Nemati R, Jalilian N, Sajedi RH (2020) Autolysis, plasmolysis and enzymatic hydrolysis of baker’s yeast (Saccharomyces cerevisiae): a comparative study. World J Microbiol Biotechnol 36(5):68

    Article  CAS  PubMed  Google Scholar 

  33. Chen ZY, Cao J, Xie L, Li XF, Yu ZH, Tong WY (2014) Construction of leaky strains and extracellular production of exogenous proteins in recombinant Escherichia coli. Microb Biotechnol 7:360–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kleiner-Grote GRM, Risse JM, Friehs K (2018) Secretion of recombinant proteins from E. coli. Eng Life Sci 18(8):532–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang W, Lu J, Zhang S, Liu L, Pang X, Lv J (2018) Development an effective system to expression recombinant protein in E. coli via comparison and optimization of signal peptides: Expression of Pseudomonas fluorescens BJ-10 thermostable lipase as case study. Microb Cell Factories 17(1):50

    Article  CAS  Google Scholar 

  36. French C, Keshavarz-Moore E, Ward JM (1996) Development of a simple method for the recovery of recombinant proteins from the E.coli periplasm. Enzym Microb Technol 19:332–338

    Article  CAS  Google Scholar 

  37. Wurm DJ, Slouka C, Bosilj T, Herwig C, Spadiut O (2016) How to trigger periplasmic release in recombinant Escherichia coli: a comparative analysis. Eng Life Sci 17(2):215–222

    Article  PubMed  PubMed Central  Google Scholar 

  38. Leibly DJ, Nguyen TN, Kao LT, Hewitt SN, Barrett LK, Van Voorhis WC (2012) Stabilizing additives added during cell lysis aid in the solubilization of recombinant proteins. PLoS One 7:e52482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Singhvi P, Panda AK (2022) Solubilization and refolding of inclusion body proteins. In: Insoluble proteins. Humana, New York, pp 371–387

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary T. Henehan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ryan, B.J., Kinsella, G.K., Henehan, G.T. (2023). Protein Extraction and Purification by Differential Solubilization. In: Loughran, S.T., Milne, J.J. (eds) Protein Chromatography. Methods in Molecular Biology, vol 2699. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3362-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3362-5_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3361-8

  • Online ISBN: 978-1-0716-3362-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics