Skip to main content

Mouse Models of Henipavirus Infection

  • Protocol
  • First Online:
Nipah Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2682))

Abstract

The Nipah and Hendra viruses, belonging to henipavirus genus, are recently emerged zoonotic pathogens that cause severe and often fatal, neurologic, and/or respiratory diseases in both humans and various animals. As mice represent a small animal model convenient to study viral infections and provide a well-developed experimental toolbox for analysis in immunovirology, we describe in this chapter a few basic methods used in biosafety 4 level (BSL4) conditions to study henipavirus infection in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eaton BT, Broder CC, Middleton D, Wang L-F (2006) Hendra and Nipah viruses: different and dangerous. Nat Rev Microbiol 4:23–35. https://doi.org/10.1038/nrmicro1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bossart K (2008) Functional studies of host-specific ephrin-B ligands as Henipavirus receptors. Virology 372:357–371. https://doi.org/10.1016/j.virol.2007.11.011

    Article  CAS  PubMed  Google Scholar 

  3. Wong KT, Grosjean I, Brisson C, Blanquier B, Fevre-Montange M, Bernard A et al (2003) A golden hamster model for human acute Nipah virus infection. Am J Pathol 163:2127–2137

    Article  PubMed  PubMed Central  Google Scholar 

  4. Westbury HA, Hooper PT, Selleck PW, Murray PK (1995) Equine morbillivirus pneumonia: susceptibility of laboratory animals to the virus. Aust Vet J 72:278–279

    Article  CAS  PubMed  Google Scholar 

  5. Bossart KN, Bingham J, Middleton D (2007) Targeted strategies for Henipavirus therapeutics. Open Virol J 1:14–25. https://doi.org/10.2174/1874357900701010014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dups J, Middleton D, Yamada M, Monaghan P, Long F, Robinson R et al (2012) A new model for Hendra virus encephalitis in the mouse. PLoS One 7:e40308. https://doi.org/10.1371/journal.pone.0040308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dups J, Middleton D, Long F, Arkinstall R, Marsh GA, Wang L-F (2014) Subclinical infection without encephalitis in mice following intranasal exposure to Nipah virus-Malaysia and Nipah virus-Bangladesh. Virol J 11:11. https://doi.org/10.1186/1743-422X-11-102

    Article  Google Scholar 

  8. Müller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM et al (1994) Functional role of type I and type II interferons in antiviral defense. Science 264:1918–1921

    Article  PubMed  Google Scholar 

  9. Dhondt KP, Mathieu C, Chalons M, Reynaud JM, Vallve A, Raoul H et al (2012) Type I interferon signaling protects mice from lethal Henipavirus infection. J Infect Dis. https://doi.org/10.1093/infdis/jis653

  10. Yun T, Park A, Hill TE, Pernet O, Beaty SM, Juelich TL et al (2015) Efficient reverse genetics reveals genetic determinants of budding and fusogenic differences between Nipah and Hendra viruses and enables real-time monitoring of viral spread in small animal models of henipavirus infection. J Virol 89:1242–1253. https://doi.org/10.1128/JVI.02583-14

    Article  CAS  PubMed  Google Scholar 

  11. Bray M, Davis K, Geisbert T, Schmaljohn C, Huggins J (1998) A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J Infect Dis 178:651–661

    Article  CAS  PubMed  Google Scholar 

  12. Chan YP, Chua KB, Koh CL, Lim ME, Lam SK (2001) Complete nucleotide sequences of Nipah virus isolates from Malaysia. J Gen Virol 82:2151–2155

    Article  CAS  PubMed  Google Scholar 

  13. Guillaume V, Wong KT, Looi RY, Georges-Courbot M-C, Barrot L, Buckland R et al (2009) Acute Hendra virus infection: analysis of the pathogenesis and passive antibody protection in the hamster model. Virology 387:459–465. https://doi.org/10.1016/j.virol.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  14. Guillaume-Vasselin V, Lemaitre L, Dhondt KP, Tedeschi L, Poulard A, Charreyre C et al (2016) Protection from Hendra virus infection with canarypox recombinant vaccine. Npj Vaccines 1:16003

    Article  PubMed  PubMed Central  Google Scholar 

  15. Frasier D, Talka J (2005) Facility design considerations for select agent animal research. ILAR J 46:23–33

    Article  CAS  PubMed  Google Scholar 

  16. Turner PV, Brabb T, Pekow C, Vasbinder MA (2011) Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci 50:600–613

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the contribution of all the members of INSERM Laboratory P4 Jean Mérieux, particularly Audrey Vallve, and Immunobiology of viral infection team at CIRI for the realization of the manuscript. The work was supported by INSERM, LABEX ECOFECT (ANR-11-LABX-0048) of Lyon University, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) and Aviesan Nipah virus study project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branka Horvat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Iampietro, M., Barron, S., Duthey, A., Horvat, B. (2023). Mouse Models of Henipavirus Infection. In: Freiberg, A.N., Rockx, B. (eds) Nipah Virus. Methods in Molecular Biology, vol 2682. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3283-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3283-3_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3282-6

  • Online ISBN: 978-1-0716-3283-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics