Skip to main content

Isolation of Mitochondria from Mouse Tissues for Functional Analysis

  • Protocol
  • First Online:
Metabolic Reprogramming

Abstract

Methods for isolating mitochondria from different rodent tissues have been established for decades. Although the general principles for crude mitochondrial preparations are largely shared across tissues – tissue disruption followed by differential centrifugation – critical differences exist for isolation from different tissues to optimize mitochondrial yield and function. This protocol offers a unified resource for preparations of isolated mitochondria from mouse liver, kidney, heart, brain, skeletal muscle, and brown and white adipose tissue suitable for functional analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chappell JB, Hansford RG (1972) Preparation of mitochondria from animal tissues and yeasts. In: Birnie GD (ed) Subcellular components, 2nd edn. Butterworth-Heinemann, pp 77–91

    Google Scholar 

  2. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297–312

    Article  CAS  PubMed  Google Scholar 

  3. Rogers GW, Brand MD, Petrosyan S, Ashok D, Elorza AA et al (2011) High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS One 6:e21746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Divakaruni AS, Jastroch M (2022) A practical guide for the analysis, standardization and interpretation of oxygen consumption measurements. Nat Metab 4:978–994

    Article  PubMed  PubMed Central  Google Scholar 

  5. Toime LJ, Brand MD (2010) Uncoupling protein-3 lowers reactive oxygen species production in isolated mitochondria. Free Radic Biol Med 49:606–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wong HS, Monternier PA, Orr AL, Brand MD (2018) Plate-based measurement of superoxide and hydrogen peroxide production by isolated mitochondria. In: Palmeira C, Moreno A (eds) Mitochondrial bioenergetics, Methods in molecular biology, vol 1782, pp 287–299

    Chapter  Google Scholar 

  7. Dröse S, Brandt U (2008) The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. J Biol Chem 283:21649–21654

    Article  PubMed  Google Scholar 

  8. Yang K, Doan MT, Stiles L, Divakaruni AS (2021) Measuring CPT-1-mediated respiration in permeabilized cells and isolated mitochondria. STAR Protoc 2:100687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Johnson D, Lardy H (1967) Isolation of liver or kidney mitochondria. Methods Enzymol 10:94–96

    Article  CAS  Google Scholar 

  10. Liesa M, Luptak I, Qin F, Hyde BB, Sahin E et al (2011) The mitochondrial transporter ABC-me (ABCB10) is a novel gene required for cardiac recovery after ischemia-reperfusion. Circulation 124:806–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sahin E, Colla S, Liesa M, Moslehi J, Müller FL et al (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470:359–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Woodall BP, Orogo AM, Najor RH, Cortez MQ, Moreno ER et al (2019) Parkin does not prevent accelerated cardiac aging in mitochondrial DNA mutator mice. JCI Insight 5:e127713

    Article  PubMed  Google Scholar 

  13. Kushnareva Y, Murphy AN, Andreyev A (2002) Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation–reduction state. Biochem J 368:545–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cogswell AM, Stevens RJ, Hood DA (1993) Properties of skeletal muscle mitochondria isolated from subsarcolemmal and intermyofibrillar regions. Am J Phys 264:C383–C389

    Article  CAS  Google Scholar 

  15. Lai N, Kummitha CM, Rosca MG, Fujioka H, Tandler B, Hoppel CL (2019) Isolation of mitochondrial subpopulations from skeletal muscle: optimizing recovery and preserving integrity. Acta Physiol (Oxf) 225:e13182

    Article  PubMed  Google Scholar 

  16. Benador IY, Veliova M, Mahdaviani K, Petcherski A, Wikstrom JD et al (2018) Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab 27:869–885.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jones AE, Sheng L, Acevedo A, Veliova M, Shirihai OS et al (2021) Forces, fluxes, and fuels: tracking mitochondrial metabolism by integrating measurements of membrane potential, respiration, and metabolites. Am J Physiol Cell Physiol 320:C80–C91

    PubMed  Google Scholar 

  18. Affourtit C, Quinlan CL, Brand MD (2012) Measurement of proton leak and electron leak in isolated mitochondria. In: Palmeira C, Moreno A (eds) Mitochondrial bioenergetics, Methods in molecular biology, vol 810, pp 165–182

    Chapter  Google Scholar 

  19. Starkov AA (2010) Measurement of mitochondrial ROS production. In: Bross P, Gregersen N (eds) Protein Misfolding and cellular stress in disease and aging, Methods in molecular biology, vol 648, pp 245–255

    Chapter  Google Scholar 

  20. Bhosale G, Duchen MR (2019) Investigating the mitochondrial permeability transition pore in disease phenotypes and drug screening. Curr Protoc Pharmacol 85:e59

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bertholet AM (2021) The use of the patch-clamp technique to study the thermogenic capacity of mitochondria. J Vis Exp 171. https://doi.org/10.3791/62618

  22. Acin-Perez R, Benador IY, Petcherski A, Veliova M, Benavides GA et al (2020) A novel approach to measure mitochondrial respiration in frozen biological samples. EMBO J 39:e104073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Spinazzi M, Casarin A, Pertegato V et al (2012) Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc 7:1235–1246

    Article  CAS  PubMed  Google Scholar 

  24. Acín-Pérez R, Hernansanz-Agustín P, Enríquez JA (2020) Analyzing electron transport chain supercomplexes. Methods Cell Biol 155:181–197

    Article  PubMed  Google Scholar 

  25. Enríquez JA (2019) Mind your mouse strain. Nat Metab 1:5–7

    Article  PubMed  Google Scholar 

  26. Nedergaard J, Cannon B (1979) Overview--preparation and properties of mitochondria from different sources. Methods Enzymol 55:3–28

    Article  CAS  PubMed  Google Scholar 

  27. White AT, Philp A, Fridolfsson HN et al (2014) High-fat diet-induced impairment of skeletal muscle insulin sensitivity is not prevented by SIRT1 overexpression. Am J Physiol Endocrinol Metab 307:E764–E772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frezza C, Cipolat S, Scorrano L (2007) Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc 2:287–295

    Article  CAS  PubMed  Google Scholar 

  29. Heisler CR (1991) Mitochondria from rat liver: method for rapid preparation and study. Biochem Educ 19:35–38

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge our colleagues and mentors Martin Brand, José Antonio Enríquez, Marc Liesa, Giovanni Manfredi, and Anne Murphy for their guidance over the years in helping us refine these protocols. This work was supported by NIH grant R35GM138003 (to A.S.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit S. Divakaruni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Acín-Pérez, R., Montales, K.P., Nguyen, K.B., Brownstein, A.J., Stiles, L., Divakaruni, A.S. (2023). Isolation of Mitochondria from Mouse Tissues for Functional Analysis. In: Papa, S., Bubici, C. (eds) Metabolic Reprogramming. Methods in Molecular Biology, vol 2675. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3247-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3247-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3246-8

  • Online ISBN: 978-1-0716-3247-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics