Skip to main content

Docking-Based Prediction of Peptide Binding to MHC Proteins

  • Protocol
  • First Online:
Computational Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2673))

Abstract

Major histocompatibility complex (MHC) proteins are the most polymorphic and polygenic proteins in humans. They bind peptides, derived from cleavage of different pathogenic antigens, and are responsible for presenting them to T cells. The peptides recognized by the T cell receptors are denoted as epitopes and they trigger an immune response.

In this chapter, we describe a docking protocol for predicting the peptide binding to a given MHC protein using the software tool GOLD. The protocol starts with the construction of a combinatorial peptide library used in the docking and ends with the derivation of a quantitative matrix (QM) accounting for the contribution of each amino acid at each peptide position.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khan AH, Prakash A, Kumar D et al (2010) Virtual screening and pharmacophore studies for ftase inhibitors using Indian plant anticancer compounds database. Bioinformation 5:62–66

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arévalo JMC, Amorim JC (2022) Virtual screening, optimization and molecular dynamics analyses highlighting a pyrrolo[1,2-a]quinazoline derivative as a potential inhibitor of DNA gyrase B of Mycobacterium tuberculosis. Sci Rep 12:4742

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yagci S, Gozelle M, Kaya SG et al (2021) Hit-to-lead optimization on aryloxybenzamide derivative virtual screening hit against SIRT. Bioorg Med Chem 30:115961

    Article  PubMed  Google Scholar 

  4. Atanasova M, Dimitrov I, Ivanov S et al (2022) Virtual screening and hit selection of natural compounds as acetylcholinesterase inhibitors. Molecules 27:3139

    Article  PubMed  PubMed Central  Google Scholar 

  5. Choong IC, Lew W, Lee D et al (2002) Identification of potent and selective small-molecule inhibitors of caspase-3 through the use of extended tethering and structure-based drug design. J Med Chem 45:5005–5022

    Article  PubMed  Google Scholar 

  6. Combs AP (2007) Structure-based drug design of new leads for phosphatase research. IDrugs 10:112–115

    PubMed  Google Scholar 

  7. Coumar MS, Leou J-S, Shukla P et al (2009) Structure-based drug design of novel aurora kinase A inhibitors: structural basis for potency and specificity. J Med Chem 52:1050–1062

    Article  PubMed  Google Scholar 

  8. Jia B, Ma Y, Liu B et al (2019) Synthesis, antimicrobial activity, structure-activity relationship, and molecular docking studies of indole diketopiperazine alkaloids. Front Chem 7:837

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bacalhau P, San Juan AA, Marques CS et al (2016) New cholinesterase inhibitors for Alzheimer’s disease: Structure Activity Studies (SARs) and molecular docking of isoquinolone and azepanone derivatives. Bioorg Chem 67:1––8

    Article  PubMed  Google Scholar 

  10. Singh N, Villoutreix BO, Ecker GF (2019) Rigorous sampling of docking poses unveils binding hypothesis for the halogenated ligands of L-type Amino acid Transporter 1 (LAT1). Sci Rep 9:15061

    Article  PubMed  PubMed Central  Google Scholar 

  11. Luger D, Poli G, Wieder M et al (2015) Identification of the putative binding pocket of valerenic acid on GABA A receptors using docking studies and site-directed mutagenesis. Br J Pharmacol 172:5403–5413

    Article  PubMed  PubMed Central  Google Scholar 

  12. Inoue Y, Nakamura N, Inagami T (1997) A review of mutagenesis studies of angiotensin II type 1 receptor, the three-dimensional receptor model in search of the agonist and antagonist binding site and the hypothesis of a receptor activation mechanism. J Hypertens 15:703–714

    Article  PubMed  Google Scholar 

  13. Venhorst J, ter Laak AM, Commandeur JNM et al (2003) Homology modeling of rat and human cytochrome P450 2D (CYP2D) isoforms and computational rationalization of experimental ligand-binding specificities. J Med Chem 46:74–86

    Article  PubMed  Google Scholar 

  14. Xie L, Evangelidis T, Xie L et al (2011) Drug discovery using chemical systems biology: weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir. PLoS Comput Biol 7:e1002037

    Article  PubMed  PubMed Central  Google Scholar 

  15. Atanasova M, Patronov A, Dimitrov I et al (2013) EpiDOCK: a molecular docking-based tool for MHC class II binding prediction. Protein Eng Des Sel 26:631–634

    Article  PubMed  Google Scholar 

  16. Patronov A, Dimitrov I, Flower DR et al (2012) Peptide binding to HLA-DP proteins at pH 5.0 and pH 7.0: a quantitative molecular docking study. BMC Struct Biol 12:20

    Article  PubMed  PubMed Central  Google Scholar 

  17. Atanasova M, Dimitrov I, Flower DR et al (2011) MHC class II binding prediction by molecular docking. Mol Inf 30:368–375

    Article  Google Scholar 

  18. Patronov A, Dimitrov I, Flower DR et al (2011) Peptide binding prediction for the human class II MHC allele HLA-DP2: a molecular docking approach. BMC Struct Biol 11:32

    Article  PubMed  PubMed Central  Google Scholar 

  19. Matondo A, Dendera W, Isamura BK et al (2022) In silico drug repurposing of anticancer drug 5-FU and analogues against SARS-CoV-2 main protease: molecular docking, molecular dynamics simulation, pharmacokinetics and chemical reactivity studies. Adv Appl Bioinforma Chem 15:59–77

    Google Scholar 

  20. Jukič M, Kores K, Janežič D et al (2021) Repurposing of drugs for SARS-CoV-2 using inverse docking fingerprints. Front Chem 9:757826

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kumar S, Chowdhury S, Kumar S (2017) In silico repurposing of antipsychotic drugs for Alzheimer’s disease. BMC Neurosci 18:76

    Article  PubMed  PubMed Central  Google Scholar 

  22. Brzezinski D, Porebski PJ, Kowiel M et al (2021) Recognizing and validating ligands with CheckMyBlob. Nucleic Acids Res 49:W86–W92

    Article  PubMed  PubMed Central  Google Scholar 

  23. Setny P, Bahadur RP, Zacharias M (2012) Protein-DNA docking with a coarse-grained force field. BMC Bioinf 13:228

    Article  Google Scholar 

  24. Viji SN, Balaji N, Gautham N (2012) Molecular docking studies of protein-nucleotide complexes using MOLSDOCK (mutually orthogonal Latin squares DOCK). J Mol Model 18:3705–3722

    Article  PubMed  Google Scholar 

  25. Zacharias M (2010) Accounting for conformational changes during protein–protein docking. Curr Opin Struct Biol 20:180–186

    Article  PubMed  Google Scholar 

  26. Almeida R, Dell’Acqua S, Krippahl L et al (2016) Predicting protein-protein interactions using BiGGER: case studies. Molecules 21:1037

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tiwari A, Singh S (2022) Computational approaches in drug designing. In: Bioinformatics. Elsevier, pp 207–217

    Chapter  Google Scholar 

  28. Prieto-Martínez FD, Arciniega M, Medina-Franco JL (2018) Acoplamiento Molecular: Avances Recientes y Retos. TIP Rev Espec en Ciencias Químico-Biológicas 21

    Google Scholar 

  29. Bissantz C, Folkers G, Rognan D (2000) Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem 43:4759–4767

    Article  PubMed  Google Scholar 

  30. Taylor RD, Jewsbury PJ, Essex JW (2002) A review of protein-small molecule docking methods. J Comput Aided Mol Des 16:151–166

    Article  PubMed  Google Scholar 

  31. Sousa SF, Fernandes PA, Ramos MJ (2006) Protein-ligand docking: current status and future challenges. Proteins Struct Funct Bioinf 65:15–26

    Article  Google Scholar 

  32. Morris GM, Lim-Wilby M (2008) Molecular Docking. In: Molecular Modeling of Proteins. Methods Molecular Biology. Humana Press, 443:365–382. https://doi.org/10.1007/978-1-59745-177-2_19

  33. Kumar S, Kumar S (2019) Molecular docking: a structure-based approach for drug repurposing. In: In silico drug design. Elsevier, pp 161–189

    Chapter  Google Scholar 

  34. Stanzione F, Giangreco I, Cole JC (2021) Use of molecular docking computational tools in drug discovery. In: Progress in Medicinal Chemistry. Elsevier, 60:273–343. https://doi.org/10.1016/bs.pmch.2021.01.004

  35. Silakari O, Singh PK (2021) Molecular docking analysis: basic technique to predict drug-receptor interactions. In: Concepts and experimental protocols of modelling and informatics in drug design. Elsevier, pp 131–155

    Chapter  Google Scholar 

  36. Perola E, Walters WP, Charifson PS (2004) A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins Struct Funct Bioinf 56:235–249

    Article  Google Scholar 

  37. Kontoyianni M, McClellan LM, Sokol GS (2004) Evaluation of docking performance: comparative data on docking algorithms. J Med Chem 47:558–565

    Article  PubMed  Google Scholar 

  38. Kellenberger E, Rodrigo J, Muller P et al (2004) Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins Struct Funct Bioinf 57:225–242

    Article  Google Scholar 

  39. Halgren TA, Murphy RB, Friesner RA et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    Article  PubMed  Google Scholar 

  40. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  PubMed  Google Scholar 

  41. Fernández MM, Guan R, Swaminathan CP et al (2006) Crystal structure of staphylococcal enterotoxin I (SEI) in complex with a human major histocompatibility complex class II molecule. J Biol Chem 281:25356–25364

    Article  PubMed  Google Scholar 

  42. Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E. Cohen. J Mol Biol 267:727–748

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Science and Education for Smart Growth Operational Program and co-financed by the European Union through the European Structural and Investment funds (Grant No BG05M2OP001-1.001-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariyana Atanasova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Atanasova, M., Doytchinova, I. (2023). Docking-Based Prediction of Peptide Binding to MHC Proteins. In: Reche, P.A. (eds) Computational Vaccine Design. Methods in Molecular Biology, vol 2673. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3239-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3239-0_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3238-3

  • Online ISBN: 978-1-0716-3239-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics