Skip to main content

EPIPOX: A Resource Facilitating Epitope-Vaccine Design Against Human Pathogenic Orthopoxviruses

  • Protocol
  • First Online:
Computational Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2673))

Abstract

EPIPOX is a specialized online resource intended to facilitate the design of epitope-based vaccines against orthopoxviruses. EPIPOX is built upon a collection of T cell epitopes that are shared by eight pathogenic orthopoxviruses, including variola minor and major strains, monkeypox, cowpox, and vaccinia viruses. In EPIPOX, users can select T cell epitopes attending to the predicted binding to distinct major histocompatibility molecules (MHC) and according to various features that may have an impact on epitope immunogenicity. Among others, EPIPOX allows to discern epitopes by their structural location in the virion and the temporal expression of the counterpart antigens. Overall, the annotations in EPIPOX are optimized to facilitate the rational design of T cell epitope-based vaccines. In this chapter, we describe the main features of EPIPOX and exemplify its use, retrieving orthopoxvirus-specific T cell epitopes with features set to enhance their immunogenicity. EPIPOX is available for free public use at http://bio.med.ucm.es/epipox/.

Laura Ballesteros-Sanabria and Hector F. Pelaez-Prestel contributed equally to the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Theves C, Biagini P, Crubezy E (2014) The rediscovery of smallpox. Clin Microbiol Infect 20(3):210–218

    Article  PubMed  Google Scholar 

  2. Buller RM, Palumbo GJ (1991) Poxvirus pathogenesis. Microbiol Rev 55(1):80–122

    Article  PubMed  PubMed Central  Google Scholar 

  3. Riedel S (2005) Edward Jenner and the history of smallpox and vaccination. Proc (Bayl Univ Med Cent) 18(1):21–25

    PubMed  Google Scholar 

  4. Diaz JH (2021) The disease ecology, epidemiology, clinical manifestations, management, prevention, and control of increasing human infections with animal orthopoxviruses. Wilderness Environ Med 32(4):528–536

    Article  PubMed  PubMed Central  Google Scholar 

  5. Molero-Abraham M, Glutting JP, Flower DR, Lafuente EM, Reche PA (2015) EPIPOX: immunoinformatic characterization of the shared T-cell epitome between variola virus and related pathogenic orthopoxviruses. J Immunol Res 2015:738020

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jenner E (1801) On the origin of the vaccine inoculation. Med Phys J 5(28):505–508

    PubMed  PubMed Central  Google Scholar 

  7. Alzhanova D, Fruh K (2010) Modulation of the host immune response by cowpox virus. Microbes Infect 12(12–13):900–909

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schrick L, Tausch SH, Dabrowski PW, Damaso CR, Esparza J, Nitsche A (2017) An early American smallpox vaccine based on horsepox. N Engl J Med 377(15):1491–1492

    Article  PubMed  Google Scholar 

  9. Maurer DM, Harrington B, Lane JM (2003) Smallpox vaccine: contraindications, administration, and adverse reactions. Am Fam Physician 68(5):889–896

    PubMed  Google Scholar 

  10. Bray M, Wright ME (2003) Progressive vaccinia. Clin Infect Dis 36(6):766–774

    Article  PubMed  Google Scholar 

  11. Bunge EM, Hoet B, Chen L, Lienert F, Weidenthaler H, Baer LR et al (2022) The changing epidemiology of human monkeypox-a potential threat? A systematic review. PLoS Negl Trop Dis 16(2):e0010141

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ballesteros-Sanabria L, Pelaez-Prestel HF, Ras-Carmona A, Reche PA (2022) Resilience of spike-specific immunity induced by COVID-19 vaccines against SARS-CoV-2 variants. Biomedicine 10(5):996

    Google Scholar 

  13. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR et al (2015) The immune epitope database (IEDB) 3.0. Nucleic Acids Res 43(Database issue):D405–D412

    Article  PubMed  Google Scholar 

  14. Jing L, Davies DH, Chong TM, Chun S, McClurkan CL, Huang J et al (2008) An extremely diverse CD4 response to vaccinia virus in humans is revealed by proteome-wide T-cell profiling. J Virol 82(14):7120–7134

    Article  PubMed  PubMed Central  Google Scholar 

  15. Oseroff C, Kos F, Bui HH, Peters B, Pasquetto V, Glenn J et al (2005) HLA class I-restricted responses to vaccinia recognize a broad array of proteins mainly involved in virulence and viral gene regulation. Proc Natl Acad Sci U S A 102(39):13980–13985

    Article  PubMed  PubMed Central  Google Scholar 

  16. Smith CL, Mirza F, Pasquetto V, Tscharke DC, Palmowski MJ, Dunbar PR et al (2005) Immunodominance of poxviral-specific CTL in a human trial of recombinant-modified vaccinia Ankara. J Immunol 175(12):8431–8437

    Article  PubMed  Google Scholar 

  17. Kim M, Yang H, Kim SK, Reche PA, Tirabassi RS, Hussey RE et al (2004) Biochemical and functional analysis of smallpox growth factor (SPGF) and anti-SPGF monoclonal antibodies. J Biol Chem 279(24):25838–25848

    Article  PubMed  Google Scholar 

  18. Yang H, Kim SK, Kim M, Reche PA, Morehead TJ, Damon IK et al (2005) Antiviral chemotherapy facilitates control of poxvirus infections through inhibition of cellular signal transduction. J Clin Invest 115(2):379–387

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kastenmuller W, Gasteiger G, Gronau JH, Baier R, Ljapoci R, Busch DH et al (2007) Cross-competition of CD8+ T cells shapes the immunodominance hierarchy during boost vaccination. J Exp Med 204(9):2187–2198

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are thankful to the ANTICIPA-CM project of Complutense University of Madrid for supporting L.B-S. H.P-P is supported by FPU 2019 Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pedro A. Reche or Esther M. Lafuente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ballesteros-Sanabria, L., Pelaez-Prestel, H.F., Reche, P.A., Lafuente, E.M. (2023). EPIPOX: A Resource Facilitating Epitope-Vaccine Design Against Human Pathogenic Orthopoxviruses. In: Reche, P.A. (eds) Computational Vaccine Design. Methods in Molecular Biology, vol 2673. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3239-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3239-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3238-3

  • Online ISBN: 978-1-0716-3239-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics