Skip to main content

Vaccine Design: An Introduction

  • Protocol
  • First Online:
Computational Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2673))

Abstract

Vaccines are the most successful and cost-effective medical interventions available to fight infectious diseases. They consist of biological preparations that are capable of stimulating the immune system to confer protective immunity against a particular harmful pathogen/agent. Vaccine design and development have evolved through the years. Early vaccines were obtained with little implementation of technology and in the absence of fundamental knowledge, representing a pure feat of human ingenuity. In contrast, modern vaccine development takes advantage of advances in technology and in our enhanced understanding of the immune system and host-pathogen interactions. Moreover, vaccine design has found novel applications beyond the prophylactic arena and there is an increasing interest in designing vaccines to treat human ailments like cancer and chronic inflammatory diseases. In this chapter, we focus on prophylactic vaccines against infectious diseases, providing an overview on immunology principles underlying immunization and on how vaccines work and are designed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID (1998) Smallpox and its eradication. In: WHO (ed) History of international public health. WHO, Geneva

    Google Scholar 

  2. Andre FE, Booy R, Bock HL, Clemens J, Datta SK, John TJ, Lee BW, Lolekha S, Peltola H, Ruff TA, Santosham M, Schmitt HJ (2008) Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull World Health Organ 86(2):140–146

    Article  PubMed  Google Scholar 

  3. Weiss RA, Esparza J (2015) The prevention and eradication of smallpox: a commentary on Sloane (1755) ‘An account of inoculation’. Philos Trans R Soc Lond Ser B Biol Sci 370(1666):20140378

    Article  Google Scholar 

  4. Smith KA (2011) Edward Jenner and the small pox vaccine. Front Immunol 2(21):21

    PubMed  PubMed Central  Google Scholar 

  5. Jenner E (1798) An enquiry into the causes and effects of the variolae vaccinae, a disease discovered in some of the western counties of England, particularly Gloucestershire, and known by the name of cowpox immunity. Sampson Low, London

    Google Scholar 

  6. Hammarsten JF, Tattersall W, Hammarsten JE (1979) Who discovered smallpox vaccination? Edward Jenner or Benjamin Jesty? Trans Am Clin Climatol Assoc 90:44–55

    PubMed  PubMed Central  Google Scholar 

  7. Pasteur L (1880) De l’attenuation du virus du cholera des poules. R Acad Sci Paris 91:673–680

    Google Scholar 

  8. Flajnik M, Singh NJ, Holland SM (2022) Paul’s fundamental immunology, 8th edn. Wolters Kluwer, Philadelphia

    Google Scholar 

  9. Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30(1):16–34

    Article  PubMed  Google Scholar 

  10. Sasai M, Yamamoto M (2013) Pathogen recognition receptors: ligands and signaling pathways by toll-like receptors. Int Rev Immunol 32(2):116–133

    Article  PubMed  Google Scholar 

  11. Paul WE (1998) Fundamental immunology. Lippincott-Raven, Philadelphia

    Google Scholar 

  12. Sanchez-Trincado JL, Gomez-Perosanz M, Reche PA (2017) Fundamentals and methods for T- and B-cell epitope prediction. J Immunol Res 2017:2680160. https://doi.org/10.1155/2017/2680160

    Article  PubMed  PubMed Central  Google Scholar 

  13. Reche PA, Reinherz EL (2003) Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol 331(3):623–641

    Article  PubMed  Google Scholar 

  14. Moxon R, Reche PA, Rappuoli R (2019) Editorial: reverse vaccinology. Front Immunol 10(2776):2776

    Article  PubMed  PubMed Central  Google Scholar 

  15. Facciola A, Visalli G, Lagana A, Di Pietro A (2022) An overview of vaccine adjuvants: current evidence and future perspectives. Vaccines (Basel) 10(5):819

    Article  PubMed  Google Scholar 

  16. Azmi F, Ahmad Fuaad AA, Skwarczynski M, Toth I (2014) Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum Vaccin Immunother 10(3):778–796

    Article  PubMed  Google Scholar 

  17. Harandi AM, Medaglini D (2010) Mucosal adjuvants. Curr HIV Res 8(4):330–335

    Article  PubMed  Google Scholar 

  18. Fujkuyama Y, Tokuhara D, Kataoka K, Gilbert RS, McGhee JR, Yuki Y, Kiyono H, Fujihashi K (2012) Novel vaccine development strategies for inducing mucosal immunity. Expert Rev Vaccines 11(3):367–379

    Article  PubMed  PubMed Central  Google Scholar 

  19. Eldred BE, Dean AJ, McGuire TM, Nash AL (2006) Vaccine components and constituents: responding to consumer concerns. Med J Aust 184(4):170–175

    Article  PubMed  Google Scholar 

  20. Yin X, Chen S, Eisenbarth SC (2021) Dendritic cell regulation of T helper cells. Annu Rev Immunol 39:759–790

    Article  PubMed  Google Scholar 

  21. Sun B, Zhang Y (2014) Overview of orchestration of CD4+ T cell subsets in immune responses. Adv Exp Med Biol 841:1–13

    Article  PubMed  Google Scholar 

  22. Pulendran B (2015) The varieties of immunological experience: of pathogens, stress, and dendritic cells. Annu Rev Immunol 33:563–606

    Article  PubMed  Google Scholar 

  23. Sette A, Rappuoli R (2010) Reverse vaccinology: developing vaccines in the era of genomics. Immunity 33(4):530–541

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yuen CT, Asokanathan C, Cook S, Lin N, Xing D (2016) Effect of different detoxification procedures on the residual pertussis toxin activities in vaccines. Vaccine 34(18):2129–2134

    Article  PubMed  Google Scholar 

  25. Moller J, Kraner M, Sonnewald U, Sangal V, Tittlbach H, Winkler J, Winkler TH, Melnikov V, Lang R, Sing A, Mattos-Guaraldi AL, Burkovski A (2019) Proteomics of diphtheria toxoid vaccines reveals multiple proteins that are immunogenic and may contribute to protection of humans against Corynebacterium diphtheriae. Vaccine 37(23):3061–3070. https://doi.org/10.1016/j.vaccine.2019.04.059

    Article  PubMed  Google Scholar 

  26. Moller J, Kraner ME, Burkovski A (2019) Proteomics of Bordetella pertussis whole-cell and acellular vaccines. BMC Res Notes 12(1):329. https://doi.org/10.1186/s13104-13019-14373-13102

    Article  PubMed  PubMed Central  Google Scholar 

  27. Moller J, Kraner ME, Burkovski A (2019) More than a toxin: protein inventory of Clostridium tetani toxoid vaccines. Proteomes 7(2):15. https://doi.org/10.3390/proteomes7020015

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shrivastaw KP, Jhamb SS, Kumar A (1995) Quantitation of the protein content of diphtheria and tetanus toxoids by the Biuret method during production of combined vaccines. Biologicals 23(1):61–63

    Article  PubMed  Google Scholar 

  29. Ballesteros-Sanabria L, Pelaez-Prestel HF, Ras-Carmona A, Reche PA (2022) Resilience of spike-specific immunity induced by COVID-19 vaccines against SARS-CoV-2 variants. Biomedicine 10(5):996

    Google Scholar 

  30. Abufares HI, Oyoun Alsoud L, Alqudah MAY, Shara M, Soares NC, Alzoubi KH, El-Huneidi W, Bustanji Y, Soliman SSM, Semreen MH (2022) COVID-19 vaccines, effectiveness, and immune responses. Int J Mol Sci 23(23):15415

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mahase E (2021) How the Oxford-AstraZeneca COVID-19 vaccine was made. BMJ 372(372):n86

    Article  PubMed  Google Scholar 

  32. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, Bailey R, Swanson KA, Roychoudhury S, Koury K, Li P, Kalina WV, Cooper D, Frenck RW Jr, Hammitt LL, Türeci Ö, Nell H, Schaefer A, Ünal S, Tresnan DB, Mather S, Dormitzer PR, Şahin U, Jansen KU, Gruber WC (2020) Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med 383(27):2603–2615

    Article  PubMed  Google Scholar 

  33. Russo G, Reche P, Pennisi M, Pappalardo F (2020) The combination of artificial intelligence and systems biology for intelligent vaccine design. Expert Opin Drug Discov 15(11):1267–1281

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We wish to thank Esther M. Lafuente and Hector F. Pelaez for critical reading and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro A. Reche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fiyouzi, T., Reche, P.A. (2023). Vaccine Design: An Introduction. In: Reche, P.A. (eds) Computational Vaccine Design. Methods in Molecular Biology, vol 2673. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3239-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3239-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3238-3

  • Online ISBN: 978-1-0716-3239-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics