Skip to main content

Magnetic Resonance Spectroscopy

  • Protocol
  • First Online:
Computational Neuroscience

Part of the book series: Neuromethods ((NM,volume 199))

  • 628 Accesses

Abstract

Magnetic resonance spectroscopy (MRS) is a completely noninvasive technique which allows the detection of brain metabolites’ concentrations in vivo. Brain metabolites are involved in energy processes, neuronal and membrane health, and in neurotransmission. The possibility of identifying changes in their concentration may open the way to early diagnosis and treatment evaluation in various pathologies.

In this chapter, the main principles behind brain MRS are briefly discussed, together with an overview of the primary clinical applications. Moreover, some concepts about data acquisition and processing are discussed, with the aim of facilitating MRS spectra analysis and interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Glunde K, Jiang L, Moestue SA, Gribbestad IS (2011) MRS and MRSI guidance in molecular medicine: targeting and monitoring of choline and glucose metabolism in cancer. NMR Biomed 24(6):673–690. https://doi.org/10.1002/nbm.1751. PMID: 21793073; PMCID: PMC3146026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ramadan S, Lin A, Stanwell P (2013) Glutamate and glutamine: a review of in vivo MRS in the human brain. NMR Biomed 26(12):1630–1646. https://doi.org/10.1002/nbm.3045. Epub 2013 Oct 4. PMID: 24123328; PMCID: PMC3849600

    Article  CAS  PubMed  Google Scholar 

  3. Oz G, Alger JR, Barker PB, Bartha R, Bizzi A, Boesch C, Bolan PJ, Brindle KM, Cudalbu C, Dinçer A, Dydak U, Emir UE, Frahm J, González RG, Gruber S, Gruetter R, Gupta RK, Heerschap A, Henning A, Hetherington HP, Howe FA, Hüppi PS, Hurd RE, Kantarci K, Klomp DW, Kreis R, Kruiskamp MJ, Leach MO, Lin AP, Luijten PR, Marjańska M, Maudsley AA, Meyerhoff DJ, Mountford CE, Nelson SJ, Pamir MN, Pan JW, Peet AC, Poptani H, Posse S, Pouwels PJ, Ratai EM, Ross BD, Scheenen TW, Schuster C, Smith IC, Soher BJ, Tkáč I, Vigneron DB, Kauppinen RA, MRS Consensus Group (2014) Clinical proton MR spectroscopy in central nervous system disorders. Radiology 270(3):658–679. https://doi.org/10.1148/radiol.13130531. PMID: 24568703; PMCID: PMC4263653

    Article  PubMed  Google Scholar 

  4. Horská A, Barker PB (2010) Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am 20(3):293–310. https://doi.org/10.1016/j.nic.2010.04.003. PMID: 20708548; PMCID: PMC2927327

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhu H, Barker PB (2011) MR spectroscopy and spectroscopic imaging of the brain. Methods Mol Biol 711:203–226. https://doi.org/10.1007/978-1-61737-992-5_9. PMID: 21279603; PMCID: PMC3416028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Port JD (2020) Magnetic resonance spectroscopy for psychiatry: progress in the last decade. Neuroimaging Clin N Am 30(1):25–33. https://doi.org/10.1016/j.nic.2019.09.002. Epub 2019 Nov 8. PMID: 31759569

    Article  PubMed  Google Scholar 

  7. Kumar V, Vajawat B, Rao NP (2021) Frontal GABA in schizophrenia: a meta-analysis of 1H-MRS studies. World J Biol Psychiatry 22(1):1–13. https://doi.org/10.1080/15622975.2020.1731925. Epub 2020 Mar 4. PMID: 32067569

    Article  CAS  PubMed  Google Scholar 

  8. Egerton A, Modinos G, Ferrera D, McGuire P (2017) Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis. Transl Psychiatry 7(6):e1147. https://doi.org/10.1038/tp.2017.124. PMID: 28585933; PMCID: PMC5537645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Poels EM, Kegeles LS, Kantrowitz JT, Javitt DC, Lieberman JA, Abi-Dargham A, Girgis RR (2014) Glutamatergic abnormalities in schizophrenia: a review of proton MRS findings. Schizophr Res 152(2–3):325–332. https://doi.org/10.1016/j.schres.2013.12.013. Epub 2014 Jan 11. PMID: 24418122; PMCID: PMC3951718

    Article  PubMed  PubMed Central  Google Scholar 

  10. Merritt K, Egerton A, Kempton MJ, Taylor MJ, McGuire PK (2016) Nature of glutamate alterations in schizophrenia: a meta-analysis of proton magnetic resonance spectroscopy studies. JAMA Psychiatry 73(7):665–674. https://doi.org/10.1001/jamapsychiatry.2016.0442. PMID: 27304221

    Article  PubMed  Google Scholar 

  11. Brugger S, Davis JM, Leucht S, Stone JM (2011) Proton magnetic resonance spectroscopy and illness stage in schizophrenia--a systematic review and meta-analysis. Biol Psychiatry 69(5):495–503. https://doi.org/10.1016/j.biopsych.2010.10.004. Epub 2010 Dec 8. PMID: 21145039

    Article  PubMed  Google Scholar 

  12. Iwata Y, Nakajima S, Plitman E, Mihashi Y, Caravaggio F, Chung JK, Kim J, Gerretsen P, Mimura M, Remington G, Graff-Guerrero A (2018) Neurometabolite levels in antipsychotic-naïve/free patients with schizophrenia: a systematic review and meta-analysis of 1H-MRS studies. Prog Neuro-Psychopharmacol Biol Psychiatry 86:340–352. https://doi.org/10.1016/j.pnpbp.2018.03.016. Epub 2018 Mar 23. PMID: 29580804

    Article  CAS  Google Scholar 

  13. Moriguchi S, Takamiya A, Noda Y, Horita N, Wada M, Tsugawa S, Plitman E, Sano Y, Tarumi R, ElSalhy M, Katayama N, Ogyu K, Miyazaki T, Kishimoto T, Graff-Guerrero A, Meyer JH, Blumberger DM, Daskalakis ZJ, Mimura M, Nakajima S (2019) Glutamatergic neurometabolite levels in major depressive disorder: a systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Mol Psychiatry 24(7):952–964. https://doi.org/10.1038/s41380-018-0252-9. Epub 2018 Oct 12. PMID: 30315224; PMCID: PMC6755980

    Article  CAS  PubMed  Google Scholar 

  14. Luykx JJ, Laban KG, van den Heuvel MP, Boks MP, Mandl RC, Kahn RS, Bakker SC (2012) Region and state specific glutamate downregulation in major depressive disorder: a meta-analysis of (1)H-MRS findings. Neurosci Biobehav Rev 36(1):198–205. https://doi.org/10.1016/j.neubiorev.2011.05.014. Epub 2011 Jun 6. PMID: 21672551

    Article  CAS  PubMed  Google Scholar 

  15. Brambilla P, Stanley JA, Nicoletti MA, Sassi RB, Mallinger AG, Frank E, Kupfer DJ, Keshavan MS, Soares JC (2005) 1H Magnetic resonance spectroscopy study of dorsolateral prefrontal cortex in unipolar mood disorder patients. Psychiatry Res 138(2):131–139. https://doi.org/10.1016/j.pscychresns.2004.12.001. PMID: 15766636

    Article  PubMed  Google Scholar 

  16. Sosa-Moscoso B, Ullauri C, Chiriboga JD, Silva P, Haro F, Leon-Rojas JE (2022) Magnetic resonance spectroscopy and bipolar disorder: how feasible is this pairing? Cureus 14(3):e23690. https://doi.org/10.7759/cureus.23690. PMID: 35505758; PMCID: PMC9056012

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sassi RB, Stanley JA, Axelson D, Brambilla P, Nicoletti MA, Keshavan MS, Ramos RT, Ryan N, Birmaher B, Soares JC (2005) Reduced NAA levels in the dorsolateral prefrontal cortex of young bipolar patients. Am J Psychiatry 162(11):2109–2115. https://doi.org/10.1176/appi.ajp.162.11.2109. PMID: 16263851

    Article  PubMed  Google Scholar 

  18. Chabert J, Allauze E, Pereira B, Chassain C, De Chazeron I, Rotgé JY, Fossati P, Llorca PM, Samalin L (2022) Glutamatergic and N-acetylaspartate metabolites in bipolar disorder: a systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Int J Mol Sci 23(16):8974. https://doi.org/10.3390/ijms23168974. PMID: 36012234; PMCID: PMC9409038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kraguljac NV, Reid M, White D, Jones R, den Hollander J, Lowman D, Lahti AC (2012) Neurometabolites in schizophrenia and bipolar disorder – a systematic review and meta-analysis. Psychiatry Res 203(2–3):111–125. https://doi.org/10.1016/j.pscychresns.2012.02.003. Epub 2012 Sep 13. PMID: 22981426; PMCID: PMC3466386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maddock RJ, Buonocore MH (2012) MR spectroscopic studies of the brain in psychiatric disorders. Curr Top Behav Neurosci 11:199–251. https://doi.org/10.1007/7854_2011_197. PMID: 22294088

    Article  PubMed  Google Scholar 

  21. Zabala A, Sánchez-González J, Parellada M, Moreno DM, Reig S, Burdalo MT, Robles O, Desco M, Arango C (2007) Findings of proton magnetic resonance spectometry in the dorsolateral prefrontal cortex in adolescents with first episodes of psychosis. Psychiatry Res 156:33–42

    Article  PubMed  Google Scholar 

  22. Squarcina L, Stanley JA, Bellani M, Altamura CA, Brambilla P (2017) A review of altered biochemistry in the anterior cingulate cortex of first-episode psychosis. Epidemiol Psychiatr Sci 26(2):122–128. https://doi.org/10.1017/S2045796016000895. Epub 2017 Jan 20. PMID: 28103961; PMCID: PMC6998769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Overbeek G, Gawne TJ, Reid MA, Kraguljac NV, Lahti AC (2021) A multimodal neuroimaging study investigating resting-state connectivity, glutamate and GABA at 7 T in first-episode psychosis. J Psychiatry Neurosci 46(6):E702–E710. https://doi.org/10.1503/jpn.210107. PMID: 34933941; PMCID: PMC8695527

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shakory S, Watts JJ, Hafizi S, Da Silva T, Khan S, Kiang M, Bagby RM, Chavez S, Mizrahi R (2018) Hippocampal glutamate metabolites and glial activation in clinical high risk and first episode psychosis. Neuropsychopharmacology 43(11):2249–2255. https://doi.org/10.1038/s41386-018-0163-0. Epub 2018 Jul 28. PMID: 30087434; PMCID: PMC6135774

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sivaraman S, Kraguljac NV, White DM, Morgan CJ, Gonzales SS, Lahti AC (2018) Neurometabolic abnormalities in the associative striatum in antipsychotic-naïve first episode psychosis patients. Psychiatry Res Neuroimaging 281:101–106. https://doi.org/10.1016/j.pscychresns.2018.06.003. Epub 2018 Jun 9. PMID: 30286325; PMCID: PMC7874514

    Article  PubMed  PubMed Central  Google Scholar 

  26. Soeiro-de-Souza MG, Otaduy MCG, Machado-Vieira R, Moreno RA, Nery FG, Leite C, Lafer B (2018) Lithium-associated anterior cingulate neurometabolic profile in euthymic Bipolar I disorder: a 1H-MRS study. J Affect Disord 241:192–199. https://doi.org/10.1016/j.jad.2018.08.039. Epub 2018 Aug 10. PMID: 30130684

    Article  CAS  PubMed  Google Scholar 

  27. Brambilla P, Stanley JA, Sassi RB, Nicoletti MA, Mallinger AG, Keshavan MS, Soares JC (2004) 1H MRS study of dorsolateral prefrontal cortex in healthy individuals before and after lithium administration. Neuropsychopharmacology 29(10):1918–1924. https://doi.org/10.1038/sj.npp.1300520. PMID: 15257303

    Article  CAS  PubMed  Google Scholar 

  28. Stanley JA, Raz N (2018) Functional magnetic resonance spectroscopy: The “new” MRS for cognitive neuroscience and psychiatry research. Front Psychiatry. 9:76. https://doi.org/10.3389/fpsyt.2018.00076. PMID: 29593585; PMCID: PMC5857528

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mullins PG (2018) Towards a theory of functional magnetic resonance spectroscopy (fMRS): a meta-analysis and discussion of using MRS to measure changes in neurotransmitters in real time. Scand J Psychol 59(1):91–103. https://doi.org/10.1111/sjop.12411. PMID: 29356002

    Article  PubMed  Google Scholar 

  30. Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14(4):260–264. https://doi.org/10.1002/nbm.698. PMID: 11410943

    Article  CAS  PubMed  Google Scholar 

  31. Stefan D, Di Cesare F, Andrasescu A, Popa E, Lazariev A, Vescovo E, Strbak O, Williams S, Starcuk Z, Cabanas M, van Ormondt D, Graveron-Demilly D (2009) Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Meas Sci Technol 20:104035

    Article  Google Scholar 

  32. Tkáč I, Deelchand D, Dreher W, Hetherington H, Kreis R, Kumaragamage C, Považan M, Spielman DM, Strasser B, de Graaf RA (2021) Water and lipid suppression techniques for advanced 1H MRS and MRSI of the human brain: experts’ consensus recommendations. NMR Biomed 34(5):e4459. https://doi.org/10.1002/nbm.4459. Epub 2020 Dec 16. PMID: 33327042; PMCID: PMC8569948

    Article  CAS  PubMed  Google Scholar 

  33. Wilson M, Reynolds G, Kauppinen RA, Arvanitis TN, Peet AC (2011) A constrained least-squares approach to the automated quantitation of in vivo 1 H magnetic resonance spectroscopy data. Magn Reson Med 65(1):1–12

    Article  CAS  PubMed  Google Scholar 

  34. van der Graaf M (2010) In vivo magnetic resonance spectroscopy: basic methodology and clinical applications. Eur Biophys J 39(4):527–540. https://doi.org/10.1007/s00249-009-0517-y. Epub 2009 Aug 13. PMID: 19680645; PMCID: PMC2841275

    Article  CAS  PubMed  Google Scholar 

  35. Bertholdo D, Watcharakorn A, Castillo M (2013) Brain proton magnetic resonance spectroscopy: introduction and overview. Neuroimaging Clin N Am 23(3):359–380. https://doi.org/10.1016/j.nic.2012.10.002. Epub 2013 Jan 20. PMID: 23928194

    Article  PubMed  Google Scholar 

  36. Saleh MG, Edden RAE, Chang L, Ernst T (2020) Motion correction in magnetic resonance spectroscopy. Magn Reson Med. 84(5):2312–2326. https://doi.org/10.1002/mrm.28287. Epub 2020 Apr 17. PMID: 32301174; PMCID: PMC8386494

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially funded by grants from the Italian Ministry of Health.

(RF-2019-12371349), Fondazione Cariplo (2019-3416), and ERA-NET NEURON (JTC2018: UNMET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Brambilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Squarcina, L., Brambilla, P. (2023). Magnetic Resonance Spectroscopy. In: Stoyanov, D., Draganski, B., Brambilla, P., Lamm, C. (eds) Computational Neuroscience. Neuromethods, vol 199. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3230-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3230-7_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3229-1

  • Online ISBN: 978-1-0716-3230-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics