Skip to main content

Chemoproteomic Profiling of Adenylation Domain Functions in Gramicidin S-Producing Non-ribosomal Peptide Synthetases

  • Protocol
  • First Online:
Non-Ribosomal Peptide Biosynthesis and Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2670))

Abstract

Many amino acid-containing natural products are biosynthesized by large, multifunctional enzymes known as non-ribosomal peptide synthetases (NRPSs). Adenylation (A) domains in NRPSs are responsible for the incorporation of amino acid building blocks and can be considered as engineering domains; therefore, advanced techniques are required to not only rapidly verify expression and folding, but also accelerate the functional prediction of the A-domains in lysates from native and heterologous systems. We recently developed activity-based protein profiling (ABPP) of NRPSs that offers a simple and robust analytical platform for A-domains and provides insights into their enzyme–substrate specificity. In this chapter, we describe the design and synthesis of these ABPP probes and provide a summary of our work on the development of a series of protocols for labeling, visualizing, and analyzing endogenous NRPSs in complex biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Süssmuth RD, Mainz A (2017) Nonribosomal peptide synthesis-principles and prospects. Angew Chem Int Ed 56:3770–3821

    Article  Google Scholar 

  2. Hur GH, Vickery CR, Burkart MD (2012) Explorations of catalytic domains in non- ribosomal peptide synthetase enzymology. Nat Prod Rep 10:1074–1098

    Article  Google Scholar 

  3. Zhang B, Tian W, Wang S, Yan X, Jia X, Pierens GK, Chen W, Ma H, Deng Z, Qu X (2017) Activation of natural products biosynthetic pathways via a protein modification level regulation. ACS Chem Biol 12:1732–1736

    Article  CAS  PubMed  Google Scholar 

  4. Kwok R (2010) Five hard truths for synthetic biology. Nature 463:286–290

    Article  Google Scholar 

  5. Minandri F, Imperi F, Frangipani E, Bonchi C, Visaggio D, Facchini M, Pasquali P, Bragonzi A, Visca P (2016) Role of iron systems in Pseudomonas aeruginosa virulenceand airway infection. Infect Immun 84:2324–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Imperi F, Massai F, Facchini M, Frangipani E, Visaggio D, Leoni L, Bragonzi A, Visca P (2013) Repurposing the antimycotic drug flucytosine for suppression of Pseudomonas aeruginosa pathogenicity. Proc Natl Acad Sci U S A 110:7458–7463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kirienko DR, Revtovich AV, Kirienko NV (2016) A high-content, phenotypic screen identifies fluorouridine as an inhibitor of pyoverdine biosynthesis and Pseudomonas aeruginosa virulence. mSphere 1:e00217–e00216

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117:877888–877888

    Article  Google Scholar 

  9. Kirienko DR, Kang D, Kirienko NV (2019) Novel pyoverdine inhibitors mitigate Pseudomonas aeruginosa pathogenesis. Front Microbiol 9:3317

    Article  PubMed  PubMed Central  Google Scholar 

  10. Konno S, Ishikawa F, Suzuki T, Dohmae N, Burkart MD, Kakeya H (2015) Active site-directed proteomic probes for adenylation domains in nonribosomal peptide synthetases. Chem Commun 51:2262–2265

    Article  CAS  Google Scholar 

  11. Ishikawa F, Konno S, Suzuki T, Dohmae N, Kakeya H (2015) Profiling nonribosomal peptide synthetase activities using chemical proteomic probes for adenylation domains. ACS Chem Biol 10:1989–1997

    Article  CAS  PubMed  Google Scholar 

  12. Finking R, Neumüller A, Solsbacher J, Konz D, Kretzschmar G, Schweitzer M, Krumm T, Marahiel MA (2003) Aminoacyl adenylate substrate analogues for the inhibition of adenylation domains of nonribosomal peptide synthetases. Chembiochem 4:903–906

    Article  CAS  PubMed  Google Scholar 

  13. Kasai S, Konno S, Ishikawa F, Kakeya H (2015) Functional profiling of adenylation domains in nonribosomal peptide synthetases by competitive activity-based protein profiling. Chem Commun 51:15764–15767

    Article  CAS  Google Scholar 

  14. Ishikawa F, Konno S, Uchida C, Suzuki T, Takashima K, Dohmae N, Kakeya H, Tanabe G (2022) Chemoproteomics profiling of surfactin-producing nonribosomal peptide synthetases in living bacterial cells. Cell Chem Biol 29:145–156.e8

    Article  CAS  PubMed  Google Scholar 

  15. Cravatt BF, Wright AT, Kozarich JW (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 77:383–414

    Article  CAS  PubMed  Google Scholar 

  16. Sanman LE, Bogyo M (2014) Activity-based profiling of proteases. Annu Rev Biochem 83:249–273

    Article  CAS  PubMed  Google Scholar 

  17. Ishikawa F, Kakeya H (2014) Specific enrichment of nonribosomal peptide synthetase module by an affinity probe for adenylation domains. Bioorg Med Chem Lett 24:865–869

    Article  CAS  PubMed  Google Scholar 

  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  19. Augenstein DC, Thrasher KD, Sinskey AJ, Wang DI (1974) Optimization in the recovery of a labile intracellular enzyme. Biotechnol Bioeng 16:1433–1447

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Grants-in-Aid for Research (C) (19 K05722 to F.I.) from JSPS and by grants from the Noda Institute for Scientific Research (F.I.), Research Foundation for Pharmaceutical Sciences (F.I.), Japan Foundation for Applied Enzymology (F.I.), and Institute Foundation for Science, Osaka (F.I.). We are also thankful for the financial support provided by the Antiaging Project for Private Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fumihiro Ishikawa or Genzoh Tanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ishikawa, F., Tanabe, G. (2023). Chemoproteomic Profiling of Adenylation Domain Functions in Gramicidin S-Producing Non-ribosomal Peptide Synthetases. In: Burkart, M., Ishikawa, F. (eds) Non-Ribosomal Peptide Biosynthesis and Engineering. Methods in Molecular Biology, vol 2670. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3214-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3214-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3213-0

  • Online ISBN: 978-1-0716-3214-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics