Skip to main content

Comprehensive Survey of ChIP-Seq Datasets to Identify Candidate Iron Homeostasis Genes Regulated by Chromatin Modifications

  • Protocol
  • First Online:
Plant Iron Homeostasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2665))

Abstract

Vital biochemical reactions including photosynthesis to respiration require iron, which should be tightly regulated. Although increasing evidence reveals the importance of epigenetic regulation in gene expression and signaling, the role of histone modifications and chromatin remodeling in plant iron homeostasis is not well understood. In this study, we surveyed publicly available ChIP-seq datasets of Arabidopsis wild-type and mutants defective in key enzymes of histone modification and chromatin remodeling and compared the deposition of epigenetic marks on loci of genes involved in iron regulation. Based on the analysis, we compiled a comprehensive list of iron homeostasis genes with differential enrichment of various histone modifications. This report will provide a resource for future studies to investigate epigenetic regulatory mechanisms of iron homeostasis in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304

    Article  CAS  PubMed  Google Scholar 

  2. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  CAS  PubMed  Google Scholar 

  3. Widiez T, El Kafafi S, Girin T, Berr A, Ruffel S, Krouk G et al (2011) High nitrogen insensitive 9 (HNI9)-mediated systemic repression of root NO3- uptake is associated with changes in histone methylation. Proc Natl Acad Sci U S A 108:13329–13334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chandrika NN, Sundaravelpandian K, Schmidt W (2013) A PHD in histone language: on the role of histone methylation in plant responses to phosphate deficiency. Plant Signal Behav 8:e24381

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chandrika NNP, Sundaravelpandian K, Yu SM, Schmidt W (2013) ALFIN-LIKE 6 is involved in root hair elongation during phosphate deficiency in Arabidopsis. New Phytol 198:709–720

    Article  CAS  PubMed  Google Scholar 

  6. Neto J, da Silva MD, Pandolfi V, Crovella S, Benko-Iseppon AM, Kido EA (2017) Epigenetic signals on plant adaptation: a biotic stress perspective. Curr Protein Pept Sci 18:352–367

    Article  PubMed  Google Scholar 

  7. Zogli P, Libault M (2017) Plant response to biotic stress: is there a common epigenetic response during plant-pathogenic and symbiotic interactions? Plant Sci 263:89–93

    Article  CAS  PubMed  Google Scholar 

  8. Kong L, Liu Y, Wang X, Chang C (2020) Insight into the role of epigenetic processes in abiotic and biotic stress response in wheat and barley. Int J Mol Sci 21

    Google Scholar 

  9. Huang CY, Jin H (2021) Coordinated epigenetic regulation in plants: a potent managerial tool to conquer biotic stress. Front Plant Sci 12:795274

    Article  PubMed  Google Scholar 

  10. Secco D, Whelan J, Rouached H, Lister R (2017) Nutrient stress-induced chromatin changes in plants. Curr Opin Plant Biol 39:1–7

    Article  CAS  PubMed  Google Scholar 

  11. Séré D, Martin A (2020) Epigenetic regulation: another layer in plant nutrition. Plant Signal Behav 15:1686236

    Article  PubMed  Google Scholar 

  12. Fan H, Zhang Z, Wang N, Cui Y, Sun H, Liu Y et al (2014) SKB1/PRMT5-mediated histone H4R3 dimethylation of Ib subgroup bHLH genes negatively regulates iron homeostasis in Arabidopsis thaliana. Plant J 77:209–221

    Article  CAS  PubMed  Google Scholar 

  13. Park EY, Tsuyuki KM, Parsons EM, Jeong J (2020) PRC2-mediated H3K27me3 modulates shoot iron homeostasis in Arabidopsis thaliana. Plant Signal Behav 15:1784549

    Article  PubMed  PubMed Central  Google Scholar 

  14. Su J, Yao Z, Wu Y, Lee J, Jeong J (2022) Minireview: chromatin-based regulation of iron homeostasis in plants. Front Plant Sci 13:959840

    Article  PubMed  PubMed Central  Google Scholar 

  15. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M et al (2013) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41:D991–D995

    Article  CAS  PubMed  Google Scholar 

  16. Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive. Nucleic Acids Res 39:D19–D21

    Article  CAS  PubMed  Google Scholar 

  17. Pickrell JK, Gaffney DJ, Gilad Y, Pritchard JK (2011) False positive peaks in ChIP-seq and other sequencing-based functional assays caused by unannotated high copy number regions. Bioinformatics 27:2144–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jain D, Baldi S, Zabel A, Straub T, Becker PB (2015) Active promoters give rise to false positive ‘Phantom Peaks’ in ChIP-seq experiments. Nucleic Acids Res 43:6959–6968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  20. Pfluger J, Wagner D (2007) Histone modifications and dynamic regulation of genome accessibility in plants. Curr Opin Plant Biol 10:645–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eichten SR, Schmitz RJ, Springer NM (2014) Epigenetics: beyond chromatin modifications and complex genetic regulation. Plant Physiol 165:933–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moronczyk J, Braszewska A, Wojcikowska B, Chwialkowska K, Nowak K, Wojcik AM et al (2022) Insights into the histone acetylation-mediated regulation of the transcription factor genes that control the embryogenic transition in the somatic cells of arabidopsis. Cells 11:11

    Article  Google Scholar 

  23. Vaillant I, Paszkowski J (2007) Role of histone and DNA methylation in gene regulation. Curr Opin Plant Biol 10:528–533

    Article  CAS  PubMed  Google Scholar 

  24. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P et al (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298:1039–1043

    Article  CAS  PubMed  Google Scholar 

  25. Naumann K, Fischer A, Hofmann I, Krauss V, Phalke S, Irmler K et al (2005) Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in Arabidopsis. EMBO J 24:1418–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang K, Sridhar VV, Zhu J, Kapoor A, Zhu JK (2007) Distinctive core histone post-translational modification patterns in Arabidopsis thaliana. PLoS One 2:e1210

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xu L, Zhao Z, Dong A, Soubigou-Taconnat L, Renou JP, Steinmetz A et al (2008) Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol Cell Biol 28:1348–1360

    Article  CAS  PubMed  Google Scholar 

  28. Padeken J, Methot SP, Gasser SM (2022) Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol 23:623–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Andrews S (2010) FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  30. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO et al (2021) Twelve years of SAMtools and BCFtools. Gigascience 10

    Google Scholar 

  33. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ et al (2012) Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481:389–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Q, Li M, Wu T, Zhan L, Li L, Chen M et al (2022) Exploring epigenomic datasets by ChIPseeker. Curr Protocol 2:e585

    Article  CAS  Google Scholar 

  36. Zhang X, Bernatavichute YV, Cokus S, Pellegrini M, Jacobsen SE (2009) Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol 10:R62

    Article  PubMed  PubMed Central  Google Scholar 

  37. Du Z, Li H, Wei Q, Zhao X, Wang C, Zhu Q et al (2013) Genome-wide analysis of histone modifications: H3K4me2, H3K4me3, H3K9ac, and H3K27ac in Oryza sativa L. Japonica. Mol Plant 6:1463–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alvarez-Venegas R, Pien S, Sadder M, Witmer X, Grossniklaus U, Avramova Z (2003) ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes. Curr Biol 13:627–637

    Article  CAS  PubMed  Google Scholar 

  39. Ding Y, Lapko H, Ndamukong I, Xia Y, Al-Abdallat A, Lalithambika S et al (2009) The Arabidopsis chromatin modifier ATX1, the myotubularin-like AtMTM and the response to drought. Plant Signal Behav 4:1049–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Y, Zhang A, Yin H, Meng Q, Yu X, Huang S et al (2018) Trithorax-group proteins ARABIDOPSIS TRITHORAX4 (ATX4) and ATX5 function in abscisic acid and dehydration stress responses. New Phytol 217:1582–1597

    Article  CAS  PubMed  Google Scholar 

  41. Wang X, Wang D, Xu W, Kong L, Ye X, Zhuang Q et al (2021) Histone methyltransferase ATX1 dynamically regulates fiber secondary cell wall biosynthesis in Arabidopsis inflorescence stem. Nucleic Acids Res 49:190–205

    Article  CAS  PubMed  Google Scholar 

  42. Chen LQ, Luo JH, Cui ZH, Xue M, Wang L, Zhang XY et al (2017) ATX3, ATX4, and ATX5 encode putative H3K4 methyltransferases and are critical for plant development. Plant Physiol 174:1795–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oya S, Takahashi M, Takashima K, Kakutani T, Inagaki S (2022) Transcription-coupled and epigenome-encoded mechanisms direct H3K4 methylation. Nat Commun 13:4521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamada K, Nagano AJ, Nishina M, Hara-Nishimura I, Nishimura M (2013) Identification of two novel endoplasmic reticulum body-specific integral membrane proteins. Plant Physiol 161:108–120

    Article  CAS  PubMed  Google Scholar 

  45. Morrissey J, Baxter IR, Lee J, Li L, Lahner B, Grotz N et al (2009) The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell 21:3326–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kumar RK, Chu HH, Abundis C, Vasques K, Rodriguez DC, Chia JC et al (2017) Iron-nicotianamine transporters are required for proper long distance iron signaling. Plant Physiol 175:1254–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wiles ET, Selker EU (2017) H3K27 methylation: a promiscuous repressive chromatin mark. Curr Opin Genet Dev 43:31–37

    Article  CAS  PubMed  Google Scholar 

  48. Wang L, Joshi P, Miller EL, Higgins L, Slattery M, Simon JA (2018) A role for monomethylation of histone H3-K27 in gene activity in Drosophila. Genetics 208:1023–1036

    Article  CAS  PubMed  Google Scholar 

  49. Shaver S, Casas-Mollano JA, Cerny RL, Cerutti H (2010) Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas. Epigenetics 5:301–312

    Article  CAS  PubMed  Google Scholar 

  50. Li C, Chen C, Gao L, Yang S, Nguyen V, Shi X et al (2015) The Arabidopsis SWI2/SNF2 chromatin remodeler BRAHMA regulates polycomb function during vegetative development and directly activates the flowering repressor gene SVP. PLoS Genet 11:e1004944

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang H, Liu C, Cheng J, Liu J, Zhang L, He C et al (2016) Arabidopsis flower and embryo developmental genes are repressed in seedlings by different combinations of polycomb group proteins in association with distinct sets of cis-regulatory elements. PLoS Genet 12:e1005771

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chen DH, Huang Y, Jiang C, Si JP (2018) Chromatin-based regulation of plant root development. Front Plant Sci 9:1509

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shu J, Chen C, Li C, Cui Y (2020) The complexity of PRC2 catalysts CLF and SWN in plants. Biochem Soc Trans 48:2779–2789

    Article  CAS  PubMed  Google Scholar 

  54. Park EY, Tsuyuki KM, Hu F, Lee J, Jeong J (2019) PRC2-mediated H3K27me3 contributes to transcriptional regulation of FIT-dependent iron deficiency response. Front Plant Sci 10:627

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon YH, Sung ZR et al (2004) Interaction of polycomb-group proteins controlling flowering in arabidopsis. Development 131:5263–5276

    Article  CAS  PubMed  Google Scholar 

  56. Wang D, Tyson MD, Jackson SS, Yadegari R (2006) Partially redundant functions of two SET-domain polycomb-group proteins in controlling initiation of seed development in Arabidopsis. Proc Natl Acad Sci U S A 103:13244–13249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hennig L, Derkacheva M (2009) Diversity of Polycomb group complexes in plants: same rules, different players? Trends Genet 25:414–423

    Article  CAS  PubMed  Google Scholar 

  58. Shu J, Chen C, Thapa RK, Bian S, Nguyen V, Yu K et al (2019) Genome-wide occupancy of histone H3K27 methyltransferases CURLY LEAF and SWINGER in Arabidopsis seedlings. Plant Direct 3:e00100

    Article  PubMed  PubMed Central  Google Scholar 

  59. Godwin J, Farrona S (2022) The importance of networking: plant polycomb repressive complex 2 and its interactors. Epigenomes 6

    Google Scholar 

  60. Liu C, Lu F, Cui X, Cao X (2010) Histone methylation in higher plants. Annu Rev Plant Biol 61:395–420

    Article  CAS  PubMed  Google Scholar 

  61. Springer NM, Napoli CA, Selinger DA, Pandey R, Cone KC, Chandler VL et al (2003) Comparative analysis of SET domain proteins in maize and Arabidopsis reveals multiple duplications preceding the divergence of monocots and dicots. Plant Physiol 132:907–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Qian C, Zhou MM (2006) SET domain protein lysine methyltransferases: structure, specificity and catalysis. Cell Mol Life Sci 63:2755–2763

    Article  CAS  PubMed  Google Scholar 

  63. Baumbusch LO, Thorstensen T, Krauss V, Fischer A, Naumann K, Assalkhou R et al (2001) The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucleic Acids Res 29:4319–4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dong H, Liu D, Han T, Zhao Y, Sun J, Lin S et al (2015) Diversification and evolution of the SDG gene family in Brassica rapa after the whole genome triplication. Sci Rep 5:16851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Soppe WJ, Bentsink L, Koornneef M (1999) The early-flowering mutant efs is involved in the autonomous promotion pathway of Arabidopsis thaliana. Development 126:4763–4770

    Article  CAS  PubMed  Google Scholar 

  66. Cazzonelli CI, Millar T, Finnegan EJ, Pogson BJ (2009) Promoting gene expression in plants by permissive histone lysine methylation. Plant Signal Behav 4:484–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhao Z, Yu Y, Meyer D, Wu C, Shen WH (2005) Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nat Cell Biol 7:1256–1260

    Article  PubMed  Google Scholar 

  68. Kim SY, Michaels SD (2006) SUPPRESSOR OF FRI 4 encodes a nuclear-localized protein that is required for delayed flowering in winter-annual Arabidopsis. Development 133:4699–4707

    Article  CAS  PubMed  Google Scholar 

  69. Grini PE, Thorstensen T, Alm V, Vizcay-Barrena G, Windju SS, Jorstad TS et al (2009) The ASH1 HOMOLOG 2 (ASHH2) histone H3 methyltransferase is required for ovule and anther development in Arabidopsis. PLoS One 4:e7817

    Article  PubMed  PubMed Central  Google Scholar 

  70. Berr A, McCallum EJ, Alioua A, Heintz D, Heitz T, Shen WH (2010) Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi. Plant Physiol 154:1403–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yang H, Howard M, Dean C (2014) Antagonistic roles for H3K36me3 and H3K27me3 in the cold-induced epigenetic switch at Arabidopsis FLC. Curr Biol 24:1793–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li Y, Brooks M, Yeoh-Wang J, McCoy RM, Rock TM, Pasquino A et al (2020) SDG8-mediated histone methylation and RNA processing function in the response to nitrate signaling. Plant Physiol 182:215–227

    Article  CAS  PubMed  Google Scholar 

  73. Ortega E, Rengachari S, Ibrahim Z, Hoghoughi N, Gaucher J, Holehouse AS et al (2018) Transcription factor dimerization activates the p300 acetyltransferase. Nature 562:538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li C, Xu J, Li J, Li Q, Yang H (2014) Involvement of arabidopsis HAC family genes in pleiotropic developmental processes. Plant Signal Behav 9:e28173

    Article  PubMed  PubMed Central  Google Scholar 

  75. Guo J, Wei L, Chen SS, Cai XW, Su YN, Li L et al (2021) The CBP/p300 histone acetyltransferases function as plant-specific MEDIATOR subunits in Arabidopsis. J Integr Plant Biol 63:755–771

    Article  CAS  PubMed  Google Scholar 

  76. Earley KW, Shook MS, Brower-Toland B, Hicks L, Pikaard CS (2007) In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation. Plant J 52:615–626

    Article  CAS  PubMed  Google Scholar 

  77. Brosch G, Georgieva EI, Lopez-Rodas G, Lindner H, Loidl P (1992) Specificity of Zea mays histone deacetylase is regulated by phosphorylation. J Biol Chem 267:20561–20564

    Article  CAS  PubMed  Google Scholar 

  78. Zhao J, Grafi G (2000) The high mobility group I/Y protein is hypophosphorylated in endoreduplicating maize endosperm cells and is involved in alleviating histone H1-mediated transcriptional repression. J Biol Chem 275:27494–27499

    Article  CAS  PubMed  Google Scholar 

  79. Ashtiyani RK, Moghaddam AM, Schubert V, Rutten T, Fuchs J, Demidov D et al (2011) AtHaspin phosphorylates histone H3 at threonine 3 during mitosis and contributes to embryonic patterning in Arabidopsis. Plant J 68:443–454

    Article  CAS  PubMed  Google Scholar 

  80. Demidov D, Van Damme D, Geelen D, Blattner FR, Houben A (2005) Identification and dynamics of two classes of aurora-like kinases in Arabidopsis and other plants. Plant Cell 17:836–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kurihara D, Matsunaga S, Omura T, Higashiyama T, Fukui K (2011) Identification and characterization of plant Haspin kinase as a histone H3 threonine kinase. BMC Plant Biol 11:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Raxwal VK, Ghosh S, Singh S, Katiyar-Agarwal S, Goel S, Jagannath A et al (2020) Abiotic stress-mediated modulation of the chromatin landscape in Arabidopsis thaliana. J Exp Bot 71:5280–5293

    Article  CAS  PubMed  Google Scholar 

  83. Wang Z, Casas-Mollano JA, Xu J, Riethoven JJ, Zhang C, Cerutti H (2015) Osmotic stress induces phosphorylation of histone H3 at threonine 3 in pericentromeric regions of Arabidopsis thaliana. Proc Natl Acad Sci U S A 112:8487–8492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kang J, Cui H, Jia S, Liu W, Yu R, Wu Z et al (2020) Arabidopsis thaliana MLK3, a plant-specific casein kinase 1, negatively regulates flowering and phosphorylates histone H3 in vitro. Genes (Basel) 11

    Google Scholar 

  85. Wang Z, Kang J, Armando Casas-Mollano J, Dou Y, Jia S, Yang Q et al (2021) MLK4-mediated phosphorylation of histone H3T3 promotes flowering by transcriptional silencing of FLC/MAF in Arabidopsis thaliana. Plant J 105:1400–1412

    Article  CAS  PubMed  Google Scholar 

  86. Bargaje R, Alam MP, Patowary A, Sarkar M, Ali T, Gupta S et al (2012) Proximity of H2A.Z containing nucleosome to the transcription start site influences gene expression levels in the mammalian liver and brain. Nucleic Acids Res 40:8965–8978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Giaimo BD, Ferrante F, Herchenrother A, Hake SB, Borggrefe T (2019) The histone variant H2A.Z in gene regulation. Epigenetic Chromatin 12:37

    Article  Google Scholar 

  88. Luk E, Ranjan A, Fitzgerald PC, Mizuguchi G, Huang Y, Wei D et al (2010) Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome. Cell 143:725–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Aslam M, Fakher B, Jakada BH, Cao S, Qin Y (2019) SWR1 chromatin remodeling complex: a key transcriptional regulator in plants. Cell 8

    Google Scholar 

  90. Noh YS, Amasino RM (2003) PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis. Plant Cell 15:1671–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Luo YX, Hou XM, Zhang CJ, Tan LM, Shao CR, Lin RN et al (2020) A plant-specific SWR1 chromatin-remodeling complex couples histone H2A.Z deposition with nucleosome sliding. EMBO J 39:e102008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vert G, Barberon M, Zelazny E, Seguela M, Briat JF, Curie C (2009) Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta 229:1171–1179

    Article  CAS  PubMed  Google Scholar 

  93. Grillet L, Lan P, Li W, Mokkapati G, Schmidt W (2018) IRON MAN is a ubiquitous family of peptides that control iron transport in plants. Nat Plants 4:953–963

    Article  CAS  PubMed  Google Scholar 

  94. Martin-Barranco A, Spielmann J, Dubeaux G, Vert G, Zelazny E (2020) Dynamic control of the high-affinity iron uptake complex in root epidermal cells. Plant Physiol 184:1236–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gollhofer J, Timofeev R, Lan P, Schmidt W, Buckhout TJ (2014) Vacuolar-iron-transporter1-like proteins mediate iron homeostasis in Arabidopsis. PLoS One 9:e110468

    Article  PubMed  PubMed Central  Google Scholar 

  96. Eroglu S, Meier B, von Wiren N, Peiter E (2016) The vacuolar manganese transporter MTP8 determines tolerance to iron deficiency-induced chlorosis in Arabidopsis. Plant Physiol 170:1030–1045

    Article  CAS  PubMed  Google Scholar 

  97. Jain A, Dashner ZS, Connolly EL (2019) Mitochondrial iron transporters (MIT1 and MIT2) are essential for iron homeostasis and embryogenesis in Arabidopsis thaliana. Front Plant Sci 10

    Google Scholar 

  98. Green LS, Rogers EE (2004) FRD3 controls iron localization in Arabidopsis. Plant Physiol 136:2523–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Khan MA, Castro-Guerrero NA, McInturf SA, Nguyen NT, Dame AN, Wang J et al (2018) Changes in iron availability in Arabidopsis are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots. Plant Cell Environ 41:2263–2276

    Article  CAS  PubMed  Google Scholar 

  100. Khoshnevis S, Dreggors RE, Hoffmann TFR, Ghalei H (2019) A conserved Bcd1 interaction essential for box C/D snoRNP biogenesis. J Biol Chem 294:18360–18371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Li Y, Lu CK, Li CY, Lei RH, Pu MN, Zhao JH et al (2021) IRON MAN interacts with BRUTUS to maintain iron homeostasis in Arabidopsis. Proc Natl Acad Sci U S A 118

    Google Scholar 

  102. Song Z, Lin S, Fu J, Chen Y, Zhang H, Li J et al (2022) Heterologous expression of ISU1 gene from Fragaria vesca enhances plant tolerance to Fe depletion in Arabidopsis. Plant Physiol Biochem 184:65–74

    Article  CAS  PubMed  Google Scholar 

  103. DiDonato RJ Jr, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J 39:403–414

    Article  CAS  PubMed  Google Scholar 

  104. Bauer P, Ling HQ, Guerinot ML (2007) FIT, the FER-like iron deficiency induced transcription factor in Arabidopsis. Plant Physiol Biochem 45:260–261

    Article  CAS  PubMed  Google Scholar 

  105. Cai Y, Li Y, Liang G (2021) FIT and bHLH Ib transcription factors modulate iron and copper crosstalk in Arabidopsis. Plant Cell Environ 44:1679–1691

    Article  CAS  PubMed  Google Scholar 

  106. Rodriguez-Celma J, Connorton JM, Kruse I, Green RT, Franceschetti M, Chen YT et al (2019) Arabidopsis BRUTUS-LIKE E3 ligases negatively regulate iron uptake by targeting transcription factor FIT for recycling. Proc Natl Acad Sci U S A 116:17584–17591

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR et al (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314:1295–1298

    Article  CAS  PubMed  Google Scholar 

  108. Frazzon AP, Ramirez MV, Warek U, Balk J, Frazzon J, Dean DR et al (2007) Functional analysis of Arabidopsis genes involved in mitochondrial iron-sulfur cluster assembly. Plant Mol Biol 64:225–240

    Article  CAS  PubMed  Google Scholar 

  109. Siwinska J, Siatkowska K, Olry A, Grosjean J, Hehn A, Bourgaud F et al (2018) Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis. J Exp Bot 69:1735–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tabata R, Kamiya T, Imoto S, Tamura H, Ikuta K, Tabata M et al (2022) Systemic regulation of iron acquisition by Arabidopsis in environments with heterogeneous iron distributions. Plant Cell Physiol 63:842–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang Z, Qian C, Guo X, Liu E, Mao K, Mu C et al (2016) ELS1, a novel MATE transporter related to leaf senescence and iron homeostasis in Arabidopsis thaliana. Biochem Biophys Res Commun 476:319–325

    Article  CAS  PubMed  Google Scholar 

  112. Connolly EL, Campbell NH, Grotz N, Prichard CL, Guerinot ML (2003) Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol 133:1102–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jain A, Wilson GT, Connolly EL (2014) The diverse roles of FRO family metalloreductases in iron and copper homeostasis. Front Plant Sci 5:100

    Article  PubMed  PubMed Central  Google Scholar 

  114. Gautam CK, Tsai HH, Schmidt W (2021) IRONMAN tunes responses to iron deficiency in concert with environmental pH. Plant Physiol 187:1728–1745

    Article  PubMed  PubMed Central  Google Scholar 

  115. Rogers EE, Guerinot ML (2002) FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell 14:1787–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144:197–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chu HH, Car S, Socha AL, Hindt MN, Punshon T, Guerinot ML (2017) The Arabidopsis MTP8 transporter determines the localization of manganese and iron in seeds. Sci Rep 7:11024

    Article  PubMed  PubMed Central  Google Scholar 

  118. Cailliatte R, Schikora A, Briat JF, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22:904–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chen HM, Wang YM, Yang HL, Zeng QY, Liu YJ (2019) NRAMP1 promotes iron uptake at the late stage of iron deficiency in poplars. Tree Physiol 39:1235–1250

    Article  CAS  PubMed  Google Scholar 

  120. Zhai Z, Gayomba SR, Jung HI, Vimalakumari NK, Pineros M, Craft E et al (2014) OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis. Plant Cell 26:2249–2264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Waters BM, Chu HH, Didonato RJ, Roberts LA, Eisley RB, Lahner B et al (2006) Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiol 141:1446–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ravet K, Touraine B, Boucherez J, Briat JF, Gaymard F, Cellier F (2009) Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J 57:400–412

    Article  CAS  PubMed  Google Scholar 

  123. Lin YF, Liang HM, Yang SY, Boch A, Clemens S, Chen CC et al (2009) Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol 182:392–404

    Article  CAS  PubMed  Google Scholar 

  124. Gao F, Robe K, Gaymard F, Izquierdo E, Dubos C (2019) The transcriptional control of iron homeostasis in plants: a tale of bHLH transcription factors? Front Plant Sci 10:6

    Article  PubMed  PubMed Central  Google Scholar 

  125. Seo PJ, Park J, Park MJ, Kim YS, Kim SG, Jung JH et al (2012) A Golgi-localized MATE transporter mediates iron homoeostasis under osmotic stress in Arabidopsis. Biochem J 442:551–561

    Article  CAS  PubMed  Google Scholar 

  126. Selote D, Samira R, Matthiadis A, Gillikin JW, Long TA (2015) Iron-binding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors. Plant Physiol 167:273–286

    Article  CAS  PubMed  Google Scholar 

  127. Hindt MN, Akmakjian GZ, Pivarski KL, Punshon T, Baxter I, Salt DE et al (2017) BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana. Metallomics 9:876–890

    Article  CAS  PubMed  Google Scholar 

  128. Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE Benfey PN (2010) The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 22:2219–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tone Y, Kawai-Yamada M, Uchimiya H (2004) Isolation and characterization of Arabidopsis thaliana ISU1 gene. Biochim Biophys Acta 1680:171–175

    Article  CAS  PubMed  Google Scholar 

  130. Hirayama T, Lei GJ, Yamaji N, Nakagawa N, Ma JF (2018) The putative peptide gene FEP1 regulates iron deficiency response in Arabidopsis. Plant Cell Physiol 59:1739–1752

    Article  CAS  PubMed  Google Scholar 

  131. Li Y, Lu CK, Li CY, Lei RH, Pu MN, Zhao JH et al (2021) IRON MAN interacts with BRUTUS to maintain iron homeostasis in Arabidopsis. Proc Natl Acad Sci U S A 118:e2109063118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rodríguez-Celma J, Chou H, Kobayashi T, Long TA, Balk J (2019) Hemerythrin E3 ubiquitin ligases as negative regulators of iron homeostasis in plants. Front Plant Sci 10:98

    Article  PubMed  PubMed Central  Google Scholar 

  133. Guo J, Wei L, Chen S-S, Cai X-W, Su Y-N, Li L et al (2021) The CBP/p300 histone acetyltransferases function as plant-specific MEDIATOR subunits in Arabidopsis. J Integr Plant Biol 63:755–771

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Duke Kunshan University, 2022 SRS fund, 2021 Interdisciplinary Seed Grant, Synear and Wang-Cai Seed Grant 2022, and Wang-Cai Biochemistry Lab Grant to J. L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joohyun Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yu, Y., Wang, Y., Yao, Z., Wang, Z., Xia, Z., Lee, J. (2023). Comprehensive Survey of ChIP-Seq Datasets to Identify Candidate Iron Homeostasis Genes Regulated by Chromatin Modifications. In: Jeong, J. (eds) Plant Iron Homeostasis. Methods in Molecular Biology, vol 2665. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3183-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3183-6_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3182-9

  • Online ISBN: 978-1-0716-3183-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics