Skip to main content

A Simple Purification Method for Heat-Stable Recombinant Low Molecular Weight Proteins and Peptides Via GST-Fusion Products

  • Protocol
  • First Online:
Advanced Methods in Structural Biology

Abstract

Here, we describe a simple, rapid, cost-effective, and efficient novel one-step purification method for GST-tagged peptides and small proteins. This novel technique applies to proteins and peptides that are known to be thermally stable at 60 °C and do not have elaborate structure(s) and whose heat-induced unfolding is reversible. This method takes advantage of glutathione S-transferase from Schistosoma japonicum (sj26GST) precipitating when heated at 60 °C. Purified GST-fusion products are subjected to enzymatic cleavage to separate the GST tag from the target peptide or small proteins. In our proposed method, the cleavage products are heated at 60 °C for 20 min which results in the precipitation of the GST tag. Subsequently, the GST tag is separated from the target peptide or small protein by high-speed centrifugation. Biophysical experiments such as SDS-PAGE, circular dichroism, isothermal titration calorimetry, mass spectroscopy, and multidimensional NMR spectroscopy confirm that the target peptides and small proteins are purified to more than 95% homogeneity, intact native conformation, and no significant change in the binding affinity of heat-treated purified product to the interacting partners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sharma S, Vaid S, Bhat B, et al (2019) Thermostable enzymes for industrial biotechnology. In: Advances in enzyme technology. Elsevier, pp 469–495

    Google Scholar 

  2. Lagassé HAD, Alexaki A, Simhadri VL, Katagiri NH et al (2017) Recent advances in (therapeutic protein) drug development. F1000Research 6:113

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mirakabad FST, Khoramgah MS, Keshavarz FK et al (2019) Peptide dendrimers as valuable biomaterials in medical sciences. Life Sci 233:12

    Google Scholar 

  4. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128

    Article  CAS  PubMed  Google Scholar 

  5. Thomas Uhlig TK, Martinelli FG, Oppici CA et al (2014) The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteom 4:58–69

    Article  Google Scholar 

  6. Sachdeva S (2017) Peptides as ‘drugs’: the journey so far. Int J Pept Res Ther 23:49–60

    Article  CAS  Google Scholar 

  7. Dulal P (2010) Protein or peptide drugs: applications, problems and solutions. Biotech Soc Nepal (bsn) E-Bull 2

    Google Scholar 

  8. Fossum S, Crooke E, Skarstad K (2007) Organization of sister origins and replisomes during multifork DNA replication in Escherichia coli. EMBO J 26:4514–4522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim H, Jang JH, Kim SC et al (2014) De novo generation of short antimicrobial peptides with enhanced stability and cell specificity. J Antimicrob Chemother 69:121–132

    Article  CAS  PubMed  Google Scholar 

  10. Ki MR, Pack SP (2020) Fusion tags to enhance heterologous protein expression. Appl Microbiol Biotechnol 104:2411–2425

    Article  CAS  PubMed  Google Scholar 

  11. Olech L (2007) Affinity tagging for protein purification. Genet Eng Biotechnol News 27:42

    Google Scholar 

  12. Kaplan W, Husler P, Klump H et al (1997) Conformational stability of pGEX-expressed Schistosoma japonicum glutathione S-transferase: a detoxification enzyme and fusion-protein affinity tag. Protein Sci 6:399–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia-colias fusions with glutathione S-transferase. Gene 67:31–40

    Article  CAS  PubMed  Google Scholar 

  14. Malhotra A (2009) Tagging for protein expression. In: Burgess RR, Deutscher MP (eds) Guide to protein purification, second edition, methods in enzymology, vol 463. Elsevier Academic Press Inc, San Diego, pp 239–258

    Chapter  Google Scholar 

  15. Schuenemann D, Gupta S, Persello-Cartieaux F et al (1998) A novel signal recognition particle targets light-harvesting proteins to the thylakoid membranes. Proc Natl Acad Sci U S A 95:10312–10316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Choy C, Kim SH (2010) Biological actions and interactions of Anosmin-1. In: Quinton R (ed) Kallmann syndrome and hypogonadotropic hypogonadism, frontiers of hormone research, vol 39. Karger, Basel, pp 78–93

    Chapter  Google Scholar 

  17. Phillips MJ, Calero G, Chan B et al (2008) Effector proteins exert an important influence on the signaling-active state of the small GTPase Cdc42. J Biol Chem 283:14153–14164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sakhel B, Jayanthi S, Muhoza D et al (2021) Simplification of the purification of heat stable recombinant low molecular weight proteins and peptides from GST-fusion products. J Chromatogr B Analyt Technol Biomed Life Sci 1172:10

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Energy (DE-FG02- 01ER15161), the National Institutes of Health/National Cancer Institute NIH/NCI (1 RO1 CA 172631) and the NIH through the COBRE program (P30 GM103450), and the Arkansas Biosciences Institute (ABI-TKSK- 2016-17). This work was also supported by the National Institute of General Medical Sciences of the National Institutes of Health under award P20GM139768 and the Arkansas Integrative Metabolic Research Center at the University of Arkansas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thallapuranam Krishnaswamy Suresh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Okoto, P.S., Sonniala, S., Sakhel, B., Muhoza, D., Adams, P., Kumar, T.K.S. (2023). A Simple Purification Method for Heat-Stable Recombinant Low Molecular Weight Proteins and Peptides Via GST-Fusion Products. In: Sousa, Â., Passarinha, L. (eds) Advanced Methods in Structural Biology. Methods in Molecular Biology, vol 2652. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3147-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3147-8_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3146-1

  • Online ISBN: 978-1-0716-3147-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics