Skip to main content

High-Throughput Protein Crystallization in an Integrated Droplet-Based Microfluidic Platform

  • Protocol
  • First Online:
Advanced Methods in Structural Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2652))

  • 1385 Accesses

Abstract

We present an integrated droplet-based microfluidic platform for high-throughput protein crystallization experimentation. The device consists of commercially available micro-junctions and PFA tubing assembled for different functions: droplet generation, incubation, and observation. Herein, we describe a complete methodology to generate hundreds of droplets with controlled properties (i.e., size, generation frequency, and composition). Therefore, multiple trials can be carried out under controlled experimental conditions for the screening and optimization of protein crystallization conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nanev CN (2020) Advancements (and challenges) in the study of protein crystal nucleation and growth; thermodynamic and kinetic explanations and comparison with small-molecule crystallization. Prog Cryst Growth Charact Mater 66:100484

    Article  CAS  Google Scholar 

  2. McPherson A, Gavira JA (2014) Introduction to protein crystallization. Acta Crystallogr F Struct Biol Commun 70:2–20

    Article  CAS  PubMed  Google Scholar 

  3. Trevino SR, Scholtz JM, Pace CN (2008) Measuring and increasing protein solubility. J Pharm Sci 97:4155–4166

    Article  CAS  PubMed  Google Scholar 

  4. Zhang S, Gerard CJJ, Ikni A et al (2017) Microfluidic platform for optimization of crystallization conditions. J Cryst Growth 472:18–28

    Article  CAS  Google Scholar 

  5. Ferreira J, Castro F, Rocha F et al (2018) Protein crystallization in a droplet-based microfluidic device: hydrodynamic analysis and study of the phase behaviour. Chem Eng Sci 191:232–244

    Article  CAS  Google Scholar 

  6. Ferreira J (2020) Protein crystallization in droplet-based microsystems, KU Leuven. https://lirias.kuleuven.be/3279392?limo=0

  7. Ferreira J, Sárkány Z, Castro F et al (2022) Insulin crystallization: the route from hanging-drop vapour diffusion to controlled crystallization in droplet microfluidics. J Cryst Growth 582:126516

    Article  CAS  Google Scholar 

  8. Ferreira J, Castro F, Kuhn S et al (2020) Controlled protein crystal nucleation in microreactors: the effect of the droplet volume: versus high supersaturation ratios. CrystEngComm 22:4692–4701

    Article  CAS  Google Scholar 

  9. Ferreira J, Opsteyn J, Rocha F et al (2020) Ultrasonic protein crystallization: promoting nucleation in microdroplets through pulsed sonication. Chem Eng Res Des 162:249–257

    Article  CAS  Google Scholar 

  10. Mühlig P, Klupsch T, Schell U et al (2001) Observation of the early stage of insulin crystallization by confocal laser scanning microscopy. J Cryst Growth 232:93–101

    Article  Google Scholar 

  11. Forsythe EL, Judge RA, Pusey ML (1999) Tetragonal chicken egg white lysozyme solubility in sodium chloride solutions. J Chem Eng Data 44:637–640

    Article  CAS  Google Scholar 

  12. Bergeron L, Filobelo LF, Galkin O et al (2003) Thermodynamics of the hydrophobicity in crystallization of insulin. Biophys J 85:3935–3942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen RQ, Lu QQ, Di CQ et al (2015) An ignored variable: solution preparation temperature in protein crystallization. Sci Rep 5:1–6

    Google Scholar 

Download references

Acknowledgments

J. F. acknowledges funding from CEFT under FCT/MCTES (PIDDAC) through a postdoctoral scholarship. This work was financially supported by: HealthyWaters (NORTE-01-0145-FEDER-000069), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); and LA/P/0045/2020 (ALiCE), UIDB/00532/2020 and UIDP/00532/2020 (CEFT), UIDB/00511/2020 and UIDP/00511/2020 (LEPABE), funded by national funds through FCT/MCTES (PIDDAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipa Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ferreira, J., Castro, F. (2023). High-Throughput Protein Crystallization in an Integrated Droplet-Based Microfluidic Platform. In: Sousa, Â., Passarinha, L. (eds) Advanced Methods in Structural Biology. Methods in Molecular Biology, vol 2652. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3147-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3147-8_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3146-1

  • Online ISBN: 978-1-0716-3147-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics