Skip to main content

Identification of Differentiated Intestinal Epithelial Cells Using Immunostaining and Fluorescence Microscopy

  • Protocol
  • First Online:
Intestinal Differentiated Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2650))

Abstract

Immunofluorescence imaging enables visualization of a wide range of molecules in diverse cells and tissues. Determining the localization and endogenous protein levels in cells using immunostaining can be highly informative for researchers studying cell structure and function. The small intestinal epithelium is composed of numerous cell types including absorptive enterocytes, mucus-producing goblet cells, lysozyme positive Paneth cells, proliferative stem cells, chemosensing tuft cells, and hormone-producing enteroendocrine cells. Each cell type in the small intestine has unique functions and structures that are critical for maintaining intestinal homeostasis and identifiable by immunofluorescence labeling. In this chapter we provide a detailed protocol and representative images of immunostaining of paraffin-embedded mouse small intestinal tissue. The method highlights antibodies and micrographs that identify differentiated cell types. These details are important because quality immunofluorescence imaging can provide novel insights and a greater understanding of healthy and disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007. https://doi.org/10.1038/nature06196

    Article  CAS  PubMed  Google Scholar 

  2. Leblond CP, Stevens CE (1948) The constant renewal of the intestinal epithelium in the albino rat. Anat Rec 100(3):357–377. https://doi.org/10.1002/ar.1091000306

    Article  CAS  PubMed  Google Scholar 

  3. Hooper LV (2015) Epithelial cell contributions to intestinal immunity. Adv Immunol 126:129–172. https://doi.org/10.1016/bs.ai.2014.11.003

    Article  CAS  PubMed  Google Scholar 

  4. de Santa BP, van den Brink GR, Roberts DJ (2003) Development and differentiation of the intestinal epithelium. Cell Mol Life Sci 60(7):1322–1332. https://doi.org/10.1007/s00018-003-2289-3

    Article  CAS  Google Scholar 

  5. Loo DD, Zeuthen T, Chandy G, Wright EM (1996) Cotransport of water by the Na+/glucose cotransporter. Proc Natl Acad Sci U S A 93(23):13367–13370. https://doi.org/10.1073/pnas.93.23.13367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR et al (1998) Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 19(3):282–285. https://doi.org/10.1038/969

    Article  CAS  PubMed  Google Scholar 

  7. Field M (2003) Intestinal ion transport and the pathophysiology of diarrhea. J Clin Invest 111(7):931–943. https://doi.org/10.1172/JCI18326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kato A, Romero MF (2011) Regulation of electroneutral NaCl absorption by the small intestine. Annu Rev Physiol 73:261–281. https://doi.org/10.1146/annurev-physiol-012110-142244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Engevik AC, Engevik MA (2021) Exploring the impact of intestinal ion transport on the gut microbiota. Comput Struct Biotechnol J 19:134–144. https://doi.org/10.1016/j.csbj.2020.12.008

    Article  CAS  PubMed  Google Scholar 

  10. Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 105(39):15064–15069. https://doi.org/10.1073/pnas.0803124105

    Article  PubMed  PubMed Central  Google Scholar 

  11. Knoop KA, Newberry RD (2018) Goblet cells: multifaceted players in immunity at mucosal surfaces. Mucosal Immunol 11(6):1551–1557. https://doi.org/10.1038/s41385-018-0039-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bevins CL, Salzman NH (2011) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9(5):356–368. https://doi.org/10.1038/nrmicro2546

    Article  CAS  PubMed  Google Scholar 

  13. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M et al (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469(7330):415–418. https://doi.org/10.1038/nature09637

    Article  CAS  PubMed  Google Scholar 

  14. Sternini C, Anselmi L, Rozengurt E (2008) Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing. Curr Opin Endocrinol Diabetes Obes 15(1):73–78. https://doi.org/10.1097/MED.0b013e3282f43a73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu Y, Yang W, Li Y, Cong Y (2020) Enteroendocrine cells: sensing gut microbiota and regulating inflammatory bowel diseases. Inflamm Bowel Dis 26(1):11–20. https://doi.org/10.1093/ibd/izz217

    Article  PubMed  Google Scholar 

  16. Gribble FM, Reimann F (2016) Enteroendocrine cells: Chemosensors in the intestinal epithelium. Annu Rev Physiol 78:277–299. https://doi.org/10.1146/annurev-physiol-021115-105439

    Article  CAS  PubMed  Google Scholar 

  17. Worthington JJ, Reimann F, Gribble FM (2018) Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol 11(1):3–20. https://doi.org/10.1038/mi.2017.73

    Article  CAS  PubMed  Google Scholar 

  18. Gerbe F, Brulin B, Makrini L, Legraverend C, Jay P (2009) DCAMKL-1 expression identifies tuft cells rather than stem cells in the adult mouse intestinal epithelium. Gastroenterology 137(6):2179–2180; author reply 80-1. https://doi.org/10.1053/j.gastro.2009.06.072

    Article  CAS  PubMed  Google Scholar 

  19. Gerbe F, Legraverend C, Jay P (2012) The intestinal epithelium tuft cells: specification and function. Cell Mol Life Sci 69(17):2907–2917. https://doi.org/10.1007/s00018-012-0984-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hofer D, Puschel B, Drenckhahn D (1996) Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. Proc Natl Acad Sci U S A 93(13):6631–6634. https://doi.org/10.1073/pnas.93.13.6631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Perez CA, Huang L, Rong M, Kozak JA, Preuss AK, Zhang H et al (2002) A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci 5(11):1169–1176. https://doi.org/10.1038/nn952

    Article  CAS  PubMed  Google Scholar 

  22. Bezencon C, le Coutre J, Damak S (2007) Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem Senses 32(1):41–49. https://doi.org/10.1093/chemse/bjl034

    Article  CAS  PubMed  Google Scholar 

  23. Kaske S, Krasteva G, Konig P, Kummer W, Hofmann T, Gudermann T et al (2007) TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells. BMC Neurosci 8:49. https://doi.org/10.1186/1471-2202-8-49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Coons AH, Creech HJ, Jones RN (1941) Immunological properties of an antibody containing a fluorescent group. Proc Soc Exp Biol Med 47(2):200–202

    Article  CAS  Google Scholar 

  25. Liu E, Vega S, Treiser M, Sung H, Moghe P (2011) Fluorescence imaging of cell-biomaterial interactions. In: Comprehensive biomaterials. Elsevier, Amsterdam, pp 291–303

    Chapter  Google Scholar 

  26. Goding JW (1986) Immunofluorescence. In: Monoclonal antibodies: principles and practice, vol 255. Elsevier, Amsterdam

    Google Scholar 

  27. Bogen SA, Vani K, Sompuram SR (2009) Molecular mechanisms of antigen retrieval: antigen retrieval reverses steric interference caused by formalin-induced cross-links. Biotech Histochem 84(5):207–215. https://doi.org/10.3109/10520290903039078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nagatake T, Fujita H, Minato N, Hamazaki Y (2014) Enteroendocrine cells are specifically marked by cell surface expression of claudin-4 in mouse small intestine. PLoS One 9(6):e90638. https://doi.org/10.1371/journal.pone.0090638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huh WJ, Roland JT, Asai M, Kaji I (2020) Distribution of duodenal tuft cells is altered in pediatric patients with acute and chronic enteropathy. Biomed Res 41(2):113–118. https://doi.org/10.2220/biomedres.41.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy C. Engevik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Digrazia, J.R., Engevik, M.A., Engevik, A.C. (2023). Identification of Differentiated Intestinal Epithelial Cells Using Immunostaining and Fluorescence Microscopy. In: Ordóñez-Morán, P. (eds) Intestinal Differentiated Cells. Methods in Molecular Biology, vol 2650. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3076-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3076-1_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3075-4

  • Online ISBN: 978-1-0716-3076-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics