Skip to main content

Co-culturing Human Intestinal Enteroid Monolayers with Innate Immune Cells

  • Protocol
  • First Online:
Intestinal Differentiated Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2650))

Abstract

The coordinated interaction between the intestinal epithelium and immune cells is required to maintain proper barrier function and mucosal host defenses to the harsh external environment of the gut lumen. Complementary to in vivo models, there is a need for practical and reproducible in vitro models that employ primary human cells to confirm and advance our understanding of mucosal immune responses under physiologic and pathophysiologic conditions. Here we describe the methods to co-culture human intestinal stem cell-derived enteroids grown as confluent monolayers on permeable supports with primary human innate immune cells (e.g., monocyte-derived macrophages and polymorphonuclear neutrophils). This co-culture model reconstructs the cellular framework of the human intestinal epithelial-immune niche with distinct apical and basolateral compartments to recreate host responses to luminal and submucosal challenges, respectively. Enteroid-immune co-cultures enable multiple outcome measures to interrogate important biological processes such as epithelial barrier integrity, stem cell biology, cellular plasticity, epithelial-immune cells crosstalk, immune cell effector functions, changes in gene expression (i.e., transcriptomic, proteomic, epigenetic), and host-microbiome interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Toshiro S, Hans C (2013) Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340(6137):1190–1194. https://doi.org/10.1126/science.1234852

  2. Zachos NC et al (2016) Human enteroids/colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology. J Biol Chem 291(8):3759–3766. https://doi.org/10.1074/jbc.R114.635995

  3. Sabine M, Kerstin S, Wiegerinck CL, Michal M, Akkerman RDL, Simone W, Hans C, Nieuwenhuis EES (2014) Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells 32(5):1083–1091. https://doi.org/10.1002/stem.1655. https://doi.org/10.1002/stem.v32.5

  4. Ding S, Song Y, Brulois KF, Pan J, Co JY, Ren L et al (2020) Retinoic acid and Lymphotoxin signaling promote differentiation of human intestinal M cells. Gastroenterology 159:214. https://doi.org/10.1053/j.gastro.2020.03.053

  5. Fasciano AC, Blutt SE, Estes MK, Mecsas J (2019) Induced differentiation of M cell-like cells in human stem cell-derived Ileal Enteroid monolayers. J Vis Exp 149. https://doi.org/10.3791/59894

  6. Ranganathan S, Doucet M, Grassel CL, Delaine-Elias B, Zachos NC, Barry EM (2019) Evaluating Shigella flexneri pathogenesis in the human Enteroid model. Infect Immun 87(4). https://doi.org/10.1128/IAI.00740-18

  7. Wood MB, Rios D, Williams IR (2016) TNF-alpha augments RANKL-dependent intestinal M cell differentiation in Enteroid cultures. Am J Physiol Cell Physiol 311(3):C498–C507. https://doi.org/10.1152/ajpcell.00108.2016

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265. https://doi.org/10.1038/nature07935

  9. Dotti I, Mora-Buch R, Ferrer-Picón E, Planell N, Jung P, Masamunt MC, Leal RF, de Carpi JM, Llach J, Ordás I, Batlle E, Panés J, Salas A (2017) Alterations in the epithelial stem cell compartment could contribute to permanent changes in the mucosa of patients with ulcerative colitis. Gut 66(12):2069–2079. https://doi.org/10.1136/gutjnl-2016-312609

  10. Howell KJ et al (2018) DNA methylation and transcription patterns in intestinal epithelial cells from pediatric patients with inflammatory bowel diseases differentiate disease subtypes and associate with outcome. Gastroenterology 154(3):585–598. https://doi.org/10.1053/j.gastro.2017.10.007

  11. Nanki K et al (2018) Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis. Cell 174(4):856–869.e17. https://doi.org/10.1016/j.cell.2018.07.027

  12. Lehle AS et al (2019) Intestinal inflammation and dysregulated immunity in patients with inherited caspase-8 deficiency. Gastroenterology 156(1):275–278. https://doi.org/10.1053/j.gastro.2018.09.041

  13. Co JY et al (2019) Controlling epithelial polarity: a human enteroid model for host-pathogen interactions. Cell Rep 26(9):2509–2520.e4. https://doi.org/10.1016/j.celrep.2019.01.108

  14. VanDussen KL, Marinshaw JM, Shaikh N, Miyoshi H, Moon C, Tarr PI, Ciorba MA, Stappenbeck TS (2015) Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut 64(6):911–920. https://doi.org/10.1136/gutjnl-2013-306651

  15. Lemme-Dumit JM, Doucet M, Zachos NC, Pasetti MF (2022) Epithelial and neutrophil interactions and coordinated response to Shigella in a human intestinal enteroid-neutrophil co-culture model. mBio 13(3):e0094422. https://doi.org/10.1128/mbio.00944-22

    Article  CAS  PubMed  Google Scholar 

  16. Noel G, Baetz NW, Staab JF, Donowitz M, Kovbasnjuk O, Pasetti MF, Zachos NC (2017) A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Sci Rep 7:45270. https://doi.org/10.1038/srep45270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Staab JF, Lemme-Dumit JM, Latanich R, Pasetti MF, Zachos NC (2020) Co-culture system of human enteroids/colonoids with innate immune cells. Curr Protoc Immunol 131(1):10.1002/cpim.v131.1. https://doi.org/10.1002/cpim.113

  18. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13(3):159–175. https://doi.org/10.1038/nri3399

    Article  CAS  PubMed  Google Scholar 

  19. Beumer J, Artegiani B, Post Y, Reimann F, Gribble F, Nguyen TN et al (2018) Enteroendocrine cells switch hormone expression along the crypt-to-villus BMP signalling gradient. Nat Cell Biol 20(8):909–916. https://doi.org/10.1038/s41556-018-0143-y

  20. Beumer J, Puschhof J, Bauza-Martinez J, Martinez-Silgado A, Elmentaite R, James KR et al (2020) High-resolution mRNA and secretome atlas of human enteroendocrine cells. Cell 181(6):1291–1306. e1219. https://doi.org/10.1016/j.cell.2020.04.036

    Article  CAS  PubMed  Google Scholar 

  21. Chang-Graham AL, Danhof HA, Engevik MA, Tomaro-Duchesneau C, Karandikar UC, Estes MK et al (2019) Human intestinal enteroids with inducible neurogenin-3 expression as a novel model of gut hormone secretion. Cell Mol Gastroenterol Hepatol 8(2):209–229. https://doi.org/10.1016/j.jcmgh.2019.04.010

    Article  PubMed  PubMed Central  Google Scholar 

  22. Koestler BJ, Ward CM, Fisher CR, Rajan A, Maresso AW, Payne SM (2019) Human intestinal Enteroids as a model system of Shigella pathogenesis. Infect Immun 87(4). https://doi.org/10.1128/IAI.00733-18

Download references

Acknowledgments

The protocols developed for co-culture studies were funded by the National Institute of Allergy and Infectious Diseases (P01-AI125181 to MP and NZ). The authors also wish to acknowledge the Integrated Physiology and Imaging Cores of the Hopkins Conte Digestive Disease Basic and Translational Research Core Center (DK-089502 to NZ) for resources used to develop the human immune-enteroid co-culture models.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcela F. Pasetti or Nicholas C. Zachos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Staab, J.F., Lemme-Dumit, J.M., Latanich, R., Pasetti, M.F., Zachos, N.C. (2023). Co-culturing Human Intestinal Enteroid Monolayers with Innate Immune Cells. In: Ordóñez-Morán, P. (eds) Intestinal Differentiated Cells. Methods in Molecular Biology, vol 2650. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3076-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3076-1_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3075-4

  • Online ISBN: 978-1-0716-3076-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics