Skip to main content

Cattle Cloning by Somatic Cell Nuclear Transfer

  • Protocol
  • First Online:
Somatic Cell Nuclear Transfer Technology

Abstract

Cloning by somatic cell Nuclear Transfer (SCNT) is a powerful technology capable of reprograming terminally differentiated cells to totipotency for generating whole animals or pluripotent stem cells for use in cell therapy, drug screening, and other biotechnological applications. However, the broad usage of SCNT remains limited due to its high cost and low efficiency in obtaining live and healthy offspring. In this chapter, we first briefly discuss the epigenetic constraints responsible for the low efficiency of SCNT and current attempts to overcome them. We then describe our bovine SCNT protocol for delivering live cloned calves and addressing basic questions about nuclear reprogramming. Other research groups can benefit from our basic protocol and build up on it to improve SCNT in the future. Strategies to correct or mitigate epigenetic errors (e.g., correcting imprinting loci, overexpression of demethylases, chromatin-modifying drugs) can integrate the protocol described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  CAS  PubMed  Google Scholar 

  2. Kato Y, Tani T, Sotomaru Y, Kurokawa K, Kato JY, Doguchi H et al (1998) Eight calves cloned from somatic cells of a single adult. Science 282:2095–2098

    Article  CAS  PubMed  Google Scholar 

  3. Galli C, Lagutina I, Perota A, Colleoni S, Duchi R, Lucchini F et al (2012) Somatic cell nuclear transfer and transgenesis in large animals: current and future insights. Reprod Domest Anim 47:2–11

    Article  PubMed  Google Scholar 

  4. Yang X, Smith SL, Tian XC, Lewin HA, Renard J-P, Wakayama T (2007) Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet 39:295–302

    Article  CAS  PubMed  Google Scholar 

  5. Wilmut I, Beaujean N, de Sousa PA, Dinnyes A, King TJ, Paterson LA et al (2002) Somatic cell nuclear transfer. Nature 419:583–586

    Article  CAS  PubMed  Google Scholar 

  6. Meirelles FV, Birgel EH, Perecin F, Bertolini M, Traldi AS, Pimentel JRV et al (2010) Delivery of cloned offspring: experience in Zebu cattle (Bos indicus). Reprod Fertil Dev 22:88–97

    Article  PubMed  Google Scholar 

  7. Pasque V, Jullien J, Miyamoto K, Halley-Stott RP, Gurdon JB (2011) Epigenetic factors influencing resistance to nuclear reprogramming. Trends Genet 27:516–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kishigami S, Mizutani E, Ohta H, Hikichi T, Van Thuan N, Wakayama S et al (2006) Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem Biophys Res Commun 340:183–189

    Article  CAS  PubMed  Google Scholar 

  9. Inoue K, Kohda T, Sugimoto M, Sado T, Ogonuki N, Matoba S et al (2010) Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science 330:496–499

    Article  CAS  PubMed  Google Scholar 

  10. Matoba S, Liu Y, Lu F, Iwabuchi KA, Shen L, Inoue A et al (2014) Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 159:884–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Halley-Stott RP, Gurdon JB (2013) Epigenetic memory in the context of nuclear reprogramming and cancer. Brief Funct Genomics 12:164–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burrill DR, Silver PA (2010) Making cellular memories. Cell 140:13–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ng RK, Gurdon JB (2005) Epigenetic memory of active gene transcription is inherited through somatic cell nuclear transfer. Proc Natl Acad Sci U S A 102:1957–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu X, Wang Y, Gao Y, Su J, Zhang J, Xing X et al (2018) H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming. Development 145:1–12

    Article  CAS  Google Scholar 

  15. Santos F, Zakhartchenko V, Stojkovic M, Peters A, Jenuwein T, Wolf E et al (2003) Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol 13:1116–1121

    Article  CAS  PubMed  Google Scholar 

  16. Sampaio RV, Sangalli JR, De Bem THC, Ambrizi DR, del Collado M, Bridi A et al (2020) Catalytic inhibition of H3K9me2 writers disturbs epigenetic marks during bovine nuclear reprogramming. Sci Rep 10:1–13

    Article  Google Scholar 

  17. Zhao J, Hao Y, Ross JW, Spate LD, Walters EM, Samuel MS et al (2010) Histone deacetylase inhibitors improve in vitro and in vivo developmental competence of somatic cell nuclear transfer porcine embryos. Cell Reprogram 12:75–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martinez-Diaz M, Che L, Albornoz M, Seneda M, Collis D, Coutinho A et al (2010) Pre- and postimplantation development of swine-cloned embryos derived from fibroblasts and bone marrow cells after inhibition of histone deacetylases. Cell Reprogram 12:85–94

    Article  CAS  PubMed  Google Scholar 

  19. Zhao J, Ross JW, Hao Y, Spate LD, Walters EM, Samuel MS et al (2009) Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer. Biol Reprod 81:525–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sangalli JR, Chiaratti MR, De Bem THC, de Araújo RR, Bressan FF, Sampaio RV et al (2014) Development to term of cloned cattle derived from donor cells treated with valproic acid. PLoS One 9:e101022

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sangalli JR, De Bem THC, Perecin F, Chiaratti MR, Oliveira LDJ, De Araújo RR et al (2012) Treatment of nuclear-donor cells or cloned zygotes with chromatin-modifying agents increases histone acetylation but does not improve full-term development of cloned cattle. Cell Reprogram 14:1–13

    Article  Google Scholar 

  22. Hosseini SM, Dufort I, Nieminen J, Moulavi F, Ghanaei HR, Hajian M et al (2016) Epigenetic modification with trichostatin A does not correct specific errors of somatic cell nuclear transfer at the transcriptomic level; highlighting the non-random nature of oocyte-mediated reprogramming errors. BMC Genomics 17:1–21

    Article  Google Scholar 

  23. Zhou C, Wang Y, Zhang J, Su J, An Q, Liu X et al (2019) H3K27me3 is an epigenetic barrier while KDM6A overexpression improves nuclear reprogramming efficiency. FASEB J 33:4638–4652

    Article  CAS  PubMed  Google Scholar 

  24. Ross PJ, Cibelli JB (2010) Bovine somatic cell nuclear transfer. Methods Mol Biol 636:155–177

    Article  PubMed  Google Scholar 

  25. Bogliotti YS, Wu J, Vilarino M, Okamura D, Soto DA, Zhong C et al (2018) Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc Natl Acad Sci 115:2090–2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miranda MDS, Bressan FF, De Bem THC, Merighe GKF, Ohashi OM, King WA et al (2012) Nuclear transfer with apoptotic bovine fibroblasts: can programmed cell death be reprogrammed? Cell Reprogram 14:217–224

    Article  CAS  PubMed  Google Scholar 

  27. Wells DN, Laible G, Tucker FC, Miller AL, Oliver JE, Xiang T et al (2003) Coordination between donor cell type and cell cycle stage improves nuclear cloning efficiency in cattle. Theriogenology 59:45–59

    Article  CAS  PubMed  Google Scholar 

  28. Campbell KH (1999) Nuclear equivalence, nuclear transfer, and the cell cycle. Cloning 1:3–15

    Article  CAS  PubMed  Google Scholar 

  29. Campbell KHS, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66

    Article  CAS  PubMed  Google Scholar 

  30. De Bem THC, Adona PR, Bressan FF, Mesquita LG, Chiaratti MR, Meirelles FV et al (2014) The influence of morphology, follicle size and Bcl-2 and bax transcripts on the developmental competence of bovine Oocytes. Reprod Domest Anim 49:576–583

    Article  PubMed  Google Scholar 

  31. Bordignon V, Smith LC (1998) Telophase enucleation: An improved method to prepare recipient cytoplasts for use in bovine nuclear transfer. Mol Reprod Dev 49:29–36

    Article  CAS  PubMed  Google Scholar 

  32. Kim EY, Park MJ, Park HY, Noh EJ, Noh EH, Park KS et al (2012) Improved cloning efficiency and developmental potential in bovine somatic cell nuclear transfer with the oosight imaging system. Cell Reprogram 14:305–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Susko-Parrish JL, Leibfried-Rutledge ML, Northey DL, Schutzkus V, First NL (1994) Inhibition of protein kinases after an induced calcium transient causes transition of bovine oocytes to embryonic cycles without meiotic completion. Dev Biol 166:729–739

    Article  CAS  PubMed  Google Scholar 

  34. Nasser LF, Reis EL, Oliveira MA, Bó GA, Baruselli PS (2004) Comparison of four synchronization protocols for fixed-time bovine embryo transfer in Bos indicus x Bos taurus recipients. Theriogenology 62:1577–1584

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the staff and students at the Laboratory of Molecular Morphophysiology and Development. Juliano Rodrigues Sangalli is supported by São Paulo Research Foundation—FAPESP, grant number #2016/13416-9. Rafael Vilar Sampaio is supported by MITACS and L’Alliance Boviteq Inc. scholarship (FR39379). Tiago Henrique Camara De Bem is supported by São Paulo Research Foundation—FAPESP, grant number #2016/22790-1. Flávio Vieira Meirelles is supported by São Paulo Research Foundation—FAPESP, grant number #2013/08135-2, National Counsel of Technological and Scientific Development (CNPq) grant number 465539/2014-9 and CAPES. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávio Vieira Meirelles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sangalli, J.R., Sampaio, R.V., De Bem, T.H.C., Smith, L.C., Meirelles, F.V. (2023). Cattle Cloning by Somatic Cell Nuclear Transfer. In: Moura, M.T. (eds) Somatic Cell Nuclear Transfer Technology . Methods in Molecular Biology, vol 2647. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3064-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3064-8_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3063-1

  • Online ISBN: 978-1-0716-3064-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics