Skip to main content

Somatic Cell Nuclear Transfer in Pigs

  • Protocol
  • First Online:
Somatic Cell Nuclear Transfer Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2647))

  • 759 Accesses

Abstract

Somatic cell nuclear transfer (SCNT) has been successfully applied to clone animals of several species. Pigs are one of the main livestock species for food production and are also important for biomedical research due to their physiopathological similarities with humans. In the past 20 years, clones of several swine breeds have been produced for a variety of purposes, including biomedical and agricultural applications. In this chapter, we describe a protocol to produce cloned pigs by SCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Illmensee K, Hoppe PC (1981) Nuclear transplantation in Mus musculus: developmental potential of nuclei from preimplantation embryos. Cell 23:9–18

    CAS  PubMed  Google Scholar 

  2. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    CAS  PubMed  Google Scholar 

  3. Keefer CL (2015) Artificial cloning of domestic animals. Proc Natl Acad Sci U S A 112:8874–8878

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Matoba S, Zhang Y (2018) Somatic cell nuclear transfer reprogramming: mechanisms and applications. Cell Stem Cell 23:471–485

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Prather RS, Sims MM, First NL (1989) Nuclear transplantation in early pig embryos. Biol Reprod 41:414–418

    CAS  PubMed  Google Scholar 

  6. Polejaeva IA, Chen SH, Vaught TD, Page RL, Mullins J, Ball S et al (2000) Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407:86–90

    CAS  PubMed  Google Scholar 

  7. Onishi A, Iwamoto M, Akita T, Mikawa S, Takeda K, Awata T et al (2000) Pig cloning by microinjection of fetal fibroblast nuclei. Science 289:1188–1190

    CAS  PubMed  Google Scholar 

  8. Park KW, Cheong HT, Lai L, Im GS, Kuhholzer B, Bonk A et al (2001) Production of nuclear transfer-derived swine that express the enhanced green fluorescent protein. Anim Biotechnol 12:173–181

    CAS  PubMed  Google Scholar 

  9. Vajta G, Zhang Y, Machaty Z (2007) Somatic cell nuclear transfer in pigs: recent achievements and future possibilities. Reprod Fertil Dev 19:403–423

    PubMed  Google Scholar 

  10. Niemann H, Kues WA (2003) Application of transgenesis in livestock for agriculture and biomedicine. Anim Reprod Sci 79:291–317

    CAS  PubMed  Google Scholar 

  11. Wernersson R, Schierup MH, Jorgensen FG, Gorodkin J, Panitz F, Staerfeldt HH et al (2005) Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics 6:70

    PubMed  PubMed Central  Google Scholar 

  12. Gutierrez K, Dicks N, Glanzner WG, Agellon LB, Bordignon V (2015) Efficacy of the porcine species in biomedical research. Front Genet 6:293

    PubMed  PubMed Central  Google Scholar 

  13. Wolf E, Braun-Reichhart C, Streckel E, Renner S (2014) Genetically engineered pig models for diabetes research. Transgenic Res 23:27–38

    CAS  PubMed  Google Scholar 

  14. Yamada K, Sykes M, Sachs DH (2017) Tolerance in xenotransplantation. Curr Opin Organ Transplant 22:522–528

    PubMed  PubMed Central  Google Scholar 

  15. Sykes M, Sachs DH (2019) Transplanting organs from pigs to humans. Sci Immunol 4

    Google Scholar 

  16. Cooper DKC, Gaston R, Eckhoff D, Ladowski J, Yamamoto T, Wang L et al (2018) Xenotransplantation-the current status and prospects. Br Med Bull 125:5–14

    CAS  PubMed  Google Scholar 

  17. Wolf DP, Mitalipov S, Norgren RB Jr (2001) Nuclear transfer technology in mammalian cloning. Arch Med Res 32:609–613

    CAS  PubMed  Google Scholar 

  18. Prather RS (2007) Nuclear remodeling and nuclear reprogramming for making transgenic pigs by nuclear transfer. Adv Exp Med Biol 591:1–13

    PubMed  Google Scholar 

  19. Lai L, Prather RS (2003) Creating genetically modified pigs by using nuclear transfer. Reprod Biol Endocrinol 1:82

    PubMed  PubMed Central  Google Scholar 

  20. Krishnakumar R, Blelloch RH (2013) Epigenetics of cellular reprogramming. Curr Opin Genet Dev 23:548–555

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14 Spec No 1:R47–R58

    PubMed  Google Scholar 

  22. Kang YK, Koo DB, Park JS, Choi YH, Chung AS, Lee KK, Han YM (2001) Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet 28:173–177

    CAS  PubMed  Google Scholar 

  23. Zhao J, Whyte J, Prather RS (2010) Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer. Cell Tissue Res 341:13–21

    PubMed  Google Scholar 

  24. Glanzner WG, de Macedo MP, Gutierrez K, Bordignon V (2022) Enhancement of chromatin and epigenetic reprogramming in porcine SCNT embryos-progresses and perspectives. Front Cell Dev Biol 10:940197. https://doi.org/10.3389/fcell.2022.940197

  25. de Macedo MP, Glanzner WG, Gutierrez K, Bordignon V (2022) Chromatin role in early programming of embryos. Anim Front 11(6):57–65. https://doi.org/10.1093/af/vfab054

  26. Mao J, Zhao MT, Whitworth KM, Spate LD, Walters EM, O’Gorman C et al (2015) Oxamflatin treatment enhances cloned porcine embryo development and nuclear reprogramming. Cell Reprogram 17:28–40

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang LJ, Zhang H, Wang YS, Xu WB, Xiong XR, Li YY et al (2011) Scriptaid improves in vitro development and nuclear reprogramming of somatic cell nuclear transfer bovine embryos. Cell Reprogram 13:431–439

    CAS  PubMed  Google Scholar 

  28. Bui HT, Wakayama S, Kishigami S, Park KK, Kim JH, Thuan NV et al (2010) Effect of trichostatin A on chromatin remodeling, histone modifications, DNA replication, and transcriptional activity in cloned mouse embryos. Biol Reprod 83:454–463

    CAS  PubMed  Google Scholar 

  29. Rissi VB, Glanzner WG, Mujica LK, Antoniazzi AQ, Goncalves PB, Bordignon V (2016) Effect of cell cycle interactions and inhibition of histone deacetylases on development of porcine embryos produced by nuclear transfer. Cell Reprogram 18:8–16

    CAS  PubMed  Google Scholar 

  30. Martinez-Diaz MA, Che L, Albornoz M, Seneda MM, Collis D, Coutinho AR et al (2010) Pre- and postimplantation development of swine-cloned embryos derived from fibroblasts and bone marrow cells after inhibition of histone deacetylases. Cell Reprogram 12:85–94

    CAS  PubMed  Google Scholar 

  31. Kretsovali A, Hadjimichael C, Charmpilas N (2012) Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem Cells Int 2012:184154

    PubMed  PubMed Central  Google Scholar 

  32. Chen CH, Du F, Xu J, Chang WF, Liu CC, Su HY et al (2013) Synergistic effect of trichostatin A and scriptaid on the development of cloned rabbit embryos. Theriogenology 79:1284–1293

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bohrer RC, Duggavathi R, Bordignon V (2014) Inhibition of histone deacetylases enhances DNA damage repair in SCNT embryos. Cell Cycle 13:2138–2148

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rissi VB, Glanzner WG, de Macedo MP, Mujica LKS, Campagnolo K, Gutierrez K et al (2018) Inhibition of RNA synthesis during Scriptaid exposure enhances gene reprogramming in SCNT embryos. Reproduction 157:123–133

    Google Scholar 

  35. de Macedo MP, Glanzner WG, Gutierrez K, Currin L, Guay V, Carrillo Herrera ME et al (2022) Simultaneous inhibition of histone deacetylases and RNA synthesis enables totipotency reprogramming in Pig SCNT Embryos. Int J Mol Sci 23(22):14142. https://doi.org/10.3390/ijms232214142

  36. Liu X, Wang Y, Gao Y, Su J, Zhang J, Xing X et al (2018) H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming. Development 145(4)

    Google Scholar 

  37. Hormanseder E, Simeone A, Allen GE, Bradshaw CR, Figlmuller M, Gurdon J et al (2017) H3K4 methylation-dependent memory of somatic cell identity inhibits reprogramming and development of nuclear transfer embryos. Cell Stem Cell 21:135–143 e136

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hyun K, Jeon J, Park K, Kim J (2017) Writing, erasing and reading histone lysine methylations. Exp Mol Med 49:e324

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Glanzner WG, Gutierrez K, Rissi VB, de Macedo MP, Lopez R, Currin L et al (2020) Histone lysine demethylases KDM5B and KDM5C modulate genome activation and stability in porcine embryos. Front Cell Dev Biol 8:151

    PubMed  PubMed Central  Google Scholar 

  40. Glanzner WG, Rissi VB, de Macedo MP, Mujica LKS, Gutierrez K, Bridi A et al (2018) Histone 3 lysine 4, 9 and 27 demethylases expression profile in fertilized and cloned bovine and porcine embryos. Biol Reprod 198:742–751

    Google Scholar 

  41. Liu X, Wang C, Liu W, Li J, Li C, Kou X et al (2016) Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537:558–562

    CAS  PubMed  Google Scholar 

  42. Dahl JA, Jung I, Aanes H, Greggains GD, Manaf A, Lerdrup M et al (2016) Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537:548–552

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chung YG, Matoba S, Liu Y, Eum JH, Lu F, Jiang W et al (2015) Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells. Cell Stem Cell 17:758–766

    CAS  PubMed  Google Scholar 

  44. Matoba S, Liu Y, Lu F, Iwabuchi KA, Shen L, Inoue A et al (2014) Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 159:884–895

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu Z, Cai Y, Wang Y, Nie Y, Zhang C, Xu Y et al (2018) Cloning of macaque monkeys by somatic cell nuclear transfer. Cell 172(881–887):e887

    Google Scholar 

  46. Simoes R, Rodrigues Santos A Jr (2017) Factors and molecules that could impact cell differentiation in the embryo generated by nuclear transfer. Organogenesis 13:156–178

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Meissner A, Jaenisch R (2006) Mammalian nuclear transfer. Dev Dyn 235:2460–2469

    PubMed  Google Scholar 

  48. Yoshioka K, Suzuki C, Tanaka A, Anas IM, Iwamura S (2002) Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol Reprod 66:112–119

    CAS  PubMed  Google Scholar 

  49. Vajta G, Lewis IM, Hyttel P, Thouas GA, Trounson AO (2001) Somatic cell cloning without micromanipulators. Cloning 3:89–95

    CAS  PubMed  Google Scholar 

  50. Nascimento AB, Albornoz MS, Che L, Visintin JA, Bordignon V (2010) Synergistic effect of porcine follicular fluid and dibutyryl cyclic adenosine monophosphate on development of parthenogenetically activated oocytes from pre-pubertal gilts. Reprod Domest Anim 45:851–859

    CAS  PubMed  Google Scholar 

  51. Park SH, Yu IJ (2013) Effect of dibutyryl cyclic adenosine monophosphate on reactive oxygen species and glutathione of porcine oocytes, apoptosis of cumulus cells, and embryonic development. Zygote 21:305–313

    CAS  PubMed  Google Scholar 

  52. Bagg MA, Nottle MB, Grupen CG, Armstrong DT (2006) Effect of dibutyryl cAMP on the cAMP content, meiotic progression, and developmental potential of in vitro matured pre-pubertal and adult pig oocytes. Mol Reprod Dev 73:1326–1332

    CAS  PubMed  Google Scholar 

  53. Che L, Lalonde A, Bordignon V (2007) Chemical activation of parthenogenetic and nuclear transfer porcine oocytes using ionomycin and strontium chloride. Theriogenology 67:1297–1304

    CAS  PubMed  Google Scholar 

  54. de Macedo MP, Glanzner WG, Rissi VB, Gutierrez K, Currin L, Baldassarre HB et al (2018) A fast and reliable protocol for activation of porcine oocytes. Theriogenology 123:22–29

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) for scholarships and the Natural Sciences and Engineering Research Council (NSERC) of Canada for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilceu Bordignon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Glanzner, W.G., Rissi, V.B., Bordignon, V. (2023). Somatic Cell Nuclear Transfer in Pigs. In: Moura, M.T. (eds) Somatic Cell Nuclear Transfer Technology . Methods in Molecular Biology, vol 2647. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3064-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3064-8_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3063-1

  • Online ISBN: 978-1-0716-3064-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics