Skip to main content

Purification of the Transmembrane Polypeptide Channel Complex of the Salmonella Flagellar Type III Secretion System

  • Protocol
  • First Online:
Bacterial and Archaeal Motility

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2646))

  • 659 Accesses

Abstract

Many motile bacteria employ the flagellar type III secretion system (fT3SS) to build the flagellum on the cell surface. The fT3SS consists of a transmembrane export gate complex, which acts as a proton/protein antiporter that couples proton flow with flagellar protein export, and a cytoplasmic ATPase ring complex, which works as an activator of the export gate complex. Three transmembrane proteins, FliP, FliQ, and FliR, form a core structure of the export gate complex, and this core complex serves as a polypeptide channel that allows flagellar structural subunits to be translocated across the cytoplasmic membrane. Here, we describe the methods for overproduction, solubilization, and purification of the Salmonella FliP/FliQ/FliR complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Morimoto YV, Minamino T (2014) Structure and function of the bi-directional bacterial flagellar motor. Biomol Ther 4:217–234

    Google Scholar 

  2. Nakamura S, Minamino T (2019) Flagella-driven motility of bacteria. Biomolecules 9:279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Minamino T (2014) Protein export through the bacterial flagellar type III export pathway. Biochim Biophys Acta 1843:1642–1648

    Article  CAS  PubMed  Google Scholar 

  4. Minamino T (2018) Hierarchical protein export mechanism of the bacterial flagellar type III protein export apparatus. FEMS Microbiol Lett 365:fny117

    Article  Google Scholar 

  5. Minamino T, Kawamoto A, Kinoshita M et al (2020) Molecular organization and assembly of the export apparatus of flagellar type III secretion systems. Curr Top Microbiol Immunol 427:91–107

    CAS  PubMed  Google Scholar 

  6. Johnson S, Furlong EJ, Deme JC et al (2021) Molecular structure of the intact bacterial flagellar basal body. Nat Microbiol 6:712–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kawamoto A, Miyata T, Makino F et al (2021) Native flagellar MS ring is formed by 34 subunits with 23-fold and 11-fold subsymmetries. Nat Commun 12:4223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Minamino T, Namba K (2008) Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature 451:485–488

    Article  CAS  PubMed  Google Scholar 

  9. Paul K, Erhardt M, Hirano T et al (2008) Energy source of flagellar type III secretion. Nature 451:489–492

    Article  CAS  PubMed  Google Scholar 

  10. Abrusci P, Vergara-Irigaray M, Johnson S et al (2013) Architecture of the major component of the type III secretion system export apparatus. Nat Struct Mol Biol 20:99–104

    Article  CAS  PubMed  Google Scholar 

  11. Kuhlen L, Abrusci P, Johnson S et al (2018) Structure of the core of the type III secretion system export apparatus. Nat Struct Mol Biol 25:583–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Terahara N, Inoue Y, Kodera N et al (2018) Insight into structural remodeling of the FlhA ring responsible for bacterial flagellar type III protein export. Sci Adv 4:eaao7054

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kuhlen L, Johnson S, Zeitler A et al (2020) The substrate specificity switch FlhB assembles onto the export gate to regulate type three secretion. Nat Commun 11:1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Minamino T, Morimoto YV, Hara N et al (2011) An energy transduction mechanism used in bacterial type III protein export. Nat Commun 2:475

    Article  PubMed  Google Scholar 

  15. Morimoto YV, Kami-ike N, Miyata T et al (2016) High-resolution pH imaging of living bacterial cell to detect local pH differences. MBio 7:e01911–e01916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Minamino T, Morimoto YV, Kinoshita M et al (2021) Membrane voltage-dependent activation mechanism of the bacterial flagellar protein export apparatus. Proc Natl Acad Sci U S A 118:e2026587118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fabiani FD, Renault TT, Peters B et al (2017) A flagellum-specific chaperone facilitates assembly of the core type III export apparatus of the bacterial flagellum. PLoS Biol 15:e2002267

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fukumura T, Makino F, Dietsche T et al (2017) Assembly and stoichiometry of the core structure of the bacterial flagellar type III export gate complex. PLoS Biol 15:e2002281

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hara N, Namba K, Minamino T (2011) Genetic characterization of conserved charged residues in the bacterial flagellar type III export protein FlhA. PLoS One 6:e22417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Minamino T, Morimoto YV, Hara N et al (2016) The bacterial flagellar type III export gate complex is a dual fuel engine that can use both H+ and Na+ for flagellar protein export. PLoS Pathog 12:e1005495

    Article  PubMed  PubMed Central  Google Scholar 

  21. Erhardt M, Wheatley P, Kim EA et al (2017) Mechanism of type-III protein secretion: regulation of FlhA conformation by a functionally critical charged-residue cluster. Mol Microbiol 104:234–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Minamino T, Kinoshita M, Morimoto YV et al (2021) The FlgN chaperone activates the Na+-driven engine of the Salmonella flagellar protein export apparatus. Commun Biol 4:335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kinoshita M, Namba K, Minamino T (2021) A positive charge region of Salmonella FliI is required for ATPase formation and efficient flagellar protein export. Commun Biol 4:464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morimoto YV, Ito M, Hiraoka KD, Che Y-S, Bai F, Kami-ike N, Namba K, Minamino T (2014) Assembly and stoichiometry of FliF and FlhA in Salmonella flagellar basal body. Mol Microbiol 91:1214–1226

    Article  CAS  PubMed  Google Scholar 

  25. Ryu J, Hartin RJ (1990) Quick transformation in Salmonella typhimurium LT2. BioTechniques 8:43–45

    CAS  PubMed  Google Scholar 

  26. Ohnishi K, Ohto Y, Aizawa S, Macnab RM, Iino T (1994) FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium. J Bacteriol 176:2272–2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Numbers JP20K15749 and JP22K06162 (to M.K.) and JP19H03182, JP22H02573, and JP22K19274 (to T.M.) and MEXT KAKENHI Grant Number JP20H05532 and JP22H04844 (to T.M.). This work has also been supported by Platform Project for Supporting Drug Discovery and Life Science Research (BINDS) from AMED under Grant Number JP19am0101117 to K.N., by the Cyclic Innovation for Clinical Empowerment (CiCLE) from AMED under Grant Number JP17pc0101020 to K.N. and by JEOL YOKOGUSHI Research Alliance Laboratories of Osaka University to K.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Minamino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kinoshita, M., Namba, K., Minamino, T. (2023). Purification of the Transmembrane Polypeptide Channel Complex of the Salmonella Flagellar Type III Secretion System. In: Minamino, T., Miyata, M., Namba, K. (eds) Bacterial and Archaeal Motility. Methods in Molecular Biology, vol 2646. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3060-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3060-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3059-4

  • Online ISBN: 978-1-0716-3060-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics