Skip to main content

Inducing Pyroptosis with FlaTox, RodTox, or NeedleTox

  • Protocol
  • First Online:
Pyroptosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2641))

  • 1046 Accesses

Abstract

Targeted activation of the NAIP-NLRC4 inflammasome has proven very useful in the study of pyroptosis. FlaTox and derivative LFn-NAIP-ligand cytosolic delivery systems offer a unique opportunity to interrogate both ligand recognition and downstream effects of the NAIP-NLRC4 inflammasome pathway. Here we describe how to stimulate the NAIP-NLRC4 inflammasome in vitro and in vivo. We describe experimental setup and specific considerations for treatment of macrophages in vitro and in vivo injections using a murine model of systemic inflammasome activation. The in vitro readouts of inflammasome activation propidium iodide uptake and lactate dehydrogenase (LDH) release as well as the in vivo readouts of hematocrit and body temperature measurement are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao Y, Yang J, Shi J, Gong Y-NN, Lu Q, Xu H, Liu L, Shao F (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:596–600. https://doi.org/10.1038/nature10510

    Article  CAS  PubMed  Google Scholar 

  2. von Moltke J, Trinidad NJ, Moayeri M, Kintzer AF, Wang SB, Van Rooijen N, Brown CR, Krantz BA, Leppla SH, Gronert K, Vance RE (2012) Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature 490:107–111. https://doi.org/10.1038/nature11351

    Article  CAS  Google Scholar 

  3. Rauch I, Tenthorey JL, Nichols RD, Al Moussawi K, Kang JJ, Kang C, Kazmierczak BI, Vance RE (2016) NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo. J Exp Med 213:657–665. https://doi.org/10.1084/jem.20151809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tenthorey JL, Kofoed EM, Daugherty MD, Malik HS, Vance RE (2014) Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes. Mol Cell 54:17–29. https://doi.org/10.1016/j.molcel.2014.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477:592–597. https://doi.org/10.1038/nature10394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lightfield KL, Persson J, Brubaker SW, Witte CE, von Moltke J, Dunipace EA, Henry T, Sun YH, Cado D, Dietrich WF, Monack DM, Tsolis RM, Vance RE (2008) Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 9:1171–1178. https://doi.org/10.1038/ni.1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao Y, Shi J, Shi X, Wang Y, Wang F, Shao F (2016) Genetic functions of the NAIP family of inflammasome receptors for bacterial ligands in mice. J Exp Med 213:647–656. https://doi.org/10.1084/jem.20160006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rayamajhi M, Zak DE, Chavarria-Smith J, Vance RE, Miao EA (2013) Cutting edge: mouse NAIP1 detects the type III secretion system needle protein. J Immunol 191:3986–3989. https://doi.org/10.4049/jimmunol.1301549

    Article  CAS  PubMed  Google Scholar 

  9. Yang J, Zhao Y, Shi J, Shao F (2013) Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci USA 110:14408–14413. https://doi.org/10.1073/pnas.1306376110

    Article  PubMed  PubMed Central  Google Scholar 

  10. Grandjean T, Boucher A, Thepaut M, Monlezun L, Guery B, Faudry E, Kipnis E, Dessein R (2017) The human NAIP-NLRC4-inflammasome senses the Pseudomonas aeruginosa T3SS inner-rod protein. Int Immunol

    Google Scholar 

  11. Reyes Ruiz VM, Ramirez J, Naseer N, Palacio NM, Siddarthan IJ, Yan BM, Boyer MA, Pensinger DA, Sauer JD, Shin S (2017) Broad detection of bacterial type III secretion system and flagellin proteins by the human NAIP/NLRC4 inflammasome. Proc Natl Acad Sci USA 114:13242–13247. https://doi.org/10.1073/pnas.1710433114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Naseer N, Egan MS, Reyes Ruiz VM, Scott WP, Hunter EN, Demissie T, Rauch I, Brodsky IE, Shin S (2022) Human NAIP/NLRC4 and NLRP3 inflammasomes detect salmonella type III secretion system activities to restrict intracellular bacterial replication. PLoS Pathog 18. https://doi.org/10.1371/JOURNAL.PPAT.1009718

  13. Kortmann J, Brubaker SW, Monack DM (2015) Cutting edge: Inflammasome activation in primary human macrophages is dependent on Flagellin. J Immunol 195:815–819. https://doi.org/10.4049/jimmunol.1403100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Manzanero S (2012) Generation of mouse bone marrow-derived macrophages. Methods Mol Biol 844:177–181. https://doi.org/10.1007/978-1-61779-527-5_12

    Article  CAS  PubMed  Google Scholar 

  15. Rosenberg IM (2005) Protein analysis and purification: benchtop techniques: second edition. Birkhäuser, Boston, pp 1–520. https://doi.org/10.1007/B138330

    Book  Google Scholar 

  16. Decker T, Lohmann-Matthes ML (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115:61–69. https://doi.org/10.1016/0022-1759(88)90310-9

    Article  CAS  PubMed  Google Scholar 

  17. Wu C, Lu W, Zhang Y, Zhang G, Shi X, Hisada Y, Grover SP, Zhang X, Li L, Xiang B, Shi J, Li XA, Daugherty A, Smyth SS, Kirchhofer D, Shiroishi T, Shao F, Mackman N, Wei Y, Li Z (2019) Inflammasome activation triggers blood clotting and host death through Pyroptosis. Immunity. https://doi.org/10.1016/j.immuni.2019.04.003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Rauch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Scott, W.P., Rauch, I. (2023). Inducing Pyroptosis with FlaTox, RodTox, or NeedleTox. In: Fink, S.L. (eds) Pyroptosis. Methods in Molecular Biology, vol 2641. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3040-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3040-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3039-6

  • Online ISBN: 978-1-0716-3040-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics