Skip to main content

Imaging Flow Cytometry of Legionella-Containing Vacuoles in Intact and Homogenized Wild-Type and Mutant Dictyostelium

  • Protocol
  • First Online:
Spectral and Imaging Cytometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2635))

  • 768 Accesses

Abstract

The causative agent of a severe pneumonia termed “Legionnaires’ disease”, Legionella pneumophila, replicates within protozoan and mammalian phagocytes in a specialized intracellular compartment called the Legionella-containing vacuole (LCV). This compartment does not fuse with bactericidal lysosomes but communicates extensively with several cellular vesicle trafficking pathways and eventually associates tightly with the endoplasmic reticulum. In order to comprehend in detail the complex process of LCV formation, the identification and kinetic analysis of cellular trafficking pathway markers on the pathogen vacuole are crucial. This chapter describes imaging flow cytometry (IFC)-based methods for the objective, quantitative and high-throughput analysis of different fluorescently tagged proteins or probes on the LCV. To this end, we use the haploid amoeba Dictyostelium discoideum as an infection model for L. pneumophila, to analyze either fixed intact infected host cells or LCVs from homogenized amoebae. Parental strains and isogenic mutant amoebae are compared in order to determine the contribution of a specific host factor to LCV formation. The amoebae simultaneously produce two different fluorescently tagged probes enabling tandem quantification of two LCV markers in intact amoebae or the identification of LCVs using one probe and quantification of the other probe in host cell homogenates. The IFC approach allows rapid generation of statistically robust data from thousands of pathogen vacuoles and can be applied to other infection models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Parte AC (2018) LPSN - list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 68:1825–1829

    Article  PubMed  Google Scholar 

  2. Hoffmann C, Harrison CF, Hilbi H (2014) The natural alternative: protozoa as cellular models for legionella infection. Cell Microbiol 16:15–26

    Article  CAS  PubMed  Google Scholar 

  3. Newton HJ, Ang DK, van Driel IR, Hartland EL (2010) Molecular pathogenesis of infections caused by legionella pneumophila. Clin Microbiol Rev 23:274–298

    Google Scholar 

  4. Swart AL, Harrison CF, Eichinger L, Steinert M, Hilbi H (2018) Acanthamoeba and Dictyostelium as cellular models for legionella infection. Front Cell Infect Microbiol 8:61

    Article  PubMed  PubMed Central  Google Scholar 

  5. Isberg RR, O'Connor TJ, Heidtman M (2009) The legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7:13–24

    Article  CAS  PubMed  Google Scholar 

  6. Hubber A, Roy CR (2010) Modulation of host cell function by legionella pneumophila type IV effectors. Ann Rev Cell Dev Biol 26:261–283

    Article  CAS  Google Scholar 

  7. Asrat S, de Jesus DA, Hempstead AD, Ramabhadran V, Isberg RR (2014) Bacterial pathogen manipulation of host membrane trafficking. Ann Rev Cell Dev Biol 30:79–109

    Article  CAS  Google Scholar 

  8. Finsel I, Hilbi H (2015) Formation of a pathogen vacuole according to legionella pneumophila: how to kill one bird with many stones. Cell Microbiol 17:935–950

    Article  CAS  PubMed  Google Scholar 

  9. Steiner B, Weber S, Hilbi H (2018) Formation of the legionella-containing vacuole: phosphoinositide conversion, GTPase modulation and ER dynamics. Int J Med Microbiol 308:49–57

    Article  CAS  PubMed  Google Scholar 

  10. Qiu J, Luo ZQ (2017) Legionella and Coxiella effectors: strength in diversity and activity. Nat Rev Microbiol 15:591–605

    Article  CAS  PubMed  Google Scholar 

  11. Bärlocher K, Welin A, Hilbi H (2017) Formation of the legionella replicative compartment at the crossroads of retrograde trafficking. Front Cell Infect Microbiol 7:482

    Article  PubMed  PubMed Central  Google Scholar 

  12. Personnic N, Bärlocher K, Finsel I, Hilbi H (2016) Subversion of retrograde trafficking by translocated pathogen effectors. Trends Microbiol 24:450–462

    Article  CAS  PubMed  Google Scholar 

  13. Steiner B, Weber S, Kaech A, Ziegler U, Hilbi H (2018) The large GTPase atlastin controls ER remodeling around a pathogen vacuole. Commun Integr Biol 11:1–5

    Article  PubMed  PubMed Central  Google Scholar 

  14. Urwyler S, Nyfeler Y, Ragaz C, Lee H, Mueller LN, Aebersold R et al (2009) Proteome analysis of legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 10:76–87

    Article  CAS  PubMed  Google Scholar 

  15. Hoffmann C, Finsel I, Otto A, Pfaffinger G, Rothmeier E, Hecker M et al (2014) Functional analysis of novel Rab GTPases identified in the proteome of purified legionella-containing vacuoles from macrophages. Cell Microbiol 16:1034–1052

    CAS  PubMed  Google Scholar 

  16. Naujoks J, Tabeling C, Dill BD, Hoffmann C, Brown AS, Kunze M et al (2016) IFNs modify the proteome of legionella-containing vacuoles and restrict infection via IRG1-derived itaconic acid. PLoS Pathog 12:e1005408

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schmölders J, Manske C, Otto A, Hoffmann C, Steiner B, Welin A et al (2017) Comparative proteomics of purified pathogen vacuoles correlates intracellular replication of legionella pneumophila with the small GTPase Ras-related protein 1 (Rap1). Mol Cell Proteomics 16:622–641

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bärlocher K, Hutter CAJ, Swart AL, Steiner B, Welin A, Hohl M et al (2017) Structural insights into legionella RidL-Vps29 retromer subunit interaction reveal displacement of the regulator TBC1D5. Nat Commun 8:1543

    Article  PubMed  PubMed Central  Google Scholar 

  19. Steiner B, Swart AL, Welin A, Weber S, Personnic N, Kaech A et al (2017) ER remodeling by the large GTPase atlastin promotes vacuolar growth of legionella pneumophila. EMBO Rep 18:1817–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Welin A, Weber S, Hilbi H (2018) Quantitative imaging flow cytometry of legionella-infected Dictyostelium amoebae reveals the impact of retrograde trafficking on pathogen vacuole composition. Appl Environ Microbiol 84:e00158–e00118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bozzaro S, Bucci C, Steinert M (2008) Phagocytosis and host-pathogen interactions in Dictyostelium with a look at macrophages. Int Rev Cell Mol Biol 271:253–300

    Article  CAS  PubMed  Google Scholar 

  22. Steinert M (2011) Pathogen-host interactions in Dictyostelium, legionella, mycobacterium and other pathogens. Stem Cell Dev Biol 22:70–76

    CAS  Google Scholar 

  23. Swart AL, Hilbi H (2020) Phosphoinositides and the fate of legionella in phagocytes. Front Immunol 11:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weber SS, Ragaz C, Reus K, Nyfeler Y, Hilbi H (2006) Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2:e46

    Article  PubMed  PubMed Central  Google Scholar 

  25. Weber SS, Ragaz C, Hilbi H (2009) The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE. Cell Microbiol 11:442–460

    Article  CAS  PubMed  Google Scholar 

  26. Buckley CM, Heath VL, Gueho A, Bosmani C, Knobloch P, Sikakana P et al (2019) PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of legionella infection. PLoS Pathog 15:e1007551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peracino B, Balest A, Bozzaro S (2010) Phosphoinositides differentially regulate bacterial uptake and Nramp1-induced resistance to legionella infection in Dictyostelium. J Cell Sci 123:4039–4051

    Article  CAS  PubMed  Google Scholar 

  28. Hüsler D, Steiner B, Welin A, Striednig B, Swart AL, Molle V, Hilbi H, Letourneur F (2021) Dictyostelium lacking the single atlastin homolog Sey1 shows aberrant ER architecture, proteolytic processes and expansion of the legionella-containing vacuole. Cell Microbiol 23:e13318

    Google Scholar 

  29. Finsel I, Ragaz C, Hoffmann C, Harrison CF, Weber S, van Rahden VA et al (2013) The legionella effector RidL inhibits retrograde trafficking to promote intracellular replication. Cell Host Microbe 14:38–50

    Article  CAS  PubMed  Google Scholar 

  30. Rothmeier E, Pfaffinger G, Hoffmann C, Harrison CF, Grabmayr H, Repnik U et al (2013) Activation of ran GTPase by a legionella effector promotes microtubule polymerization, pathogen vacuole motility and infection. PLoS Pathog 9:e1003598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Swart AL, Gomez-Valero L, Buchrieser C, Hilbi H (2020) Evolution and function of bacterial RCC1 repeat effectors. Cell Microbiol 22:e13246

    Article  CAS  PubMed  Google Scholar 

  32. Veltman DM, Van Haastert PJ (2013) Extrachromosomal inducible expression. Methods Mol Biol 983:269–281

    Article  CAS  PubMed  Google Scholar 

  33. Weber S, Wagner M, Hilbi H (2014) Live-cell imaging of phosphoinositide dynamics and membrane architecture during legionella infection. MBio 5:e00839–13

    Google Scholar 

  34. Weber S, Steiner B, Welin A, Hilbi H (2018) Legionella-containing vacuoles capture PtdIns(4)P-rich vesicles derived from the Golgi apparatus. MBio 9:e02420–18

    Google Scholar 

  35. Welin A, Weber S, Hilbi H (2019) Quantitative imaging flow cytometry of legionella-containing vacuoles in dually fluorescence-labeled Dictyostelium. Methods Mol Biol 1921:161–177

    Article  CAS  PubMed  Google Scholar 

  36. Ragaz C, Pietsch H, Urwyler S, Tiaden A, Weber SS, Hilbi H (2008) The legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol 10:2416–2433

    Article  CAS  PubMed  Google Scholar 

  37. Derre I, Isberg RR (2004) Legionella pneumophila replication vacuole formation involves rapid recruitment of proteins of the early secretory system. Infect Immun 72:3048–3053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu H, Clarke M (2005) Dynamic properties of legionella-containing phagosomes in Dictyostelium amoebae. Cell Microbiol 7:995–1007

    Article  CAS  PubMed  Google Scholar 

  39. Koliwer-Brandl H, Knobloch P, Barisch C, Welin A, Hanna N, Soldati T et al (2019) Distinct Mycobacterium marinum phosphatases determine pathogen vacuole phosphoinositide pattern, phagosome maturation, and escape to the cytosol. Cell Microbiol 21:e13008

    Article  PubMed  Google Scholar 

  40. Sadosky AB, Wiater LA, Shuman HA (1993) Identification of legionella pneumophila genes required for growth within and killing of human macrophages. Infect Immun 61:5361–5373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Segal G, Purcell M, Shuman HA (1998) Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the legionella pneumophila genome. Proc Natl Acad Sci U S A 95:1669–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Horwitz MA (1983) The Legionnaires' disease bacterium (legionella pneumophila) inhibits lysosome-phagosome fusion in human monocytes. J Exp Med 158:2108–2126

    Article  CAS  PubMed  Google Scholar 

  43. Feeley JC, Gibson RJ, Gorman GW, Langford NC, Rasheed JK, Mackel DC et al (1979) Charcoal-yeast extract agar: primary isolation medium for legionella pneumophila. J Clin Microbiol 10:437–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Loovers HM, Kortholt A, de Groote H, Whitty L, Nussbaum RL, van Haastert PJ (2007) Regulation of phagocytosis in Dictyostelium by the inositol 5-phosphatase OCRL homolog Dd5P4. Traffic 8:618–628

    Article  CAS  PubMed  Google Scholar 

  45. Cocucci SM, Sussman M (1970) RNA in cytoplasmic and nuclear fractions of cellular slime mold amebas. J Cell Biol 45:399–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Malchow D, Nagele B, Schwarz H, Gerisch G (1972) Membrane-bound cyclic AMP phosphodiesterase in chemotactically responding cells of Dictyostelium discoideum. Eur J Biochem / FEBS 28:136–142

    Article  CAS  Google Scholar 

  47. Barisch C, Paschke P, Hagedorn M, Maniak M, Soldati T (2015) Lipid droplet dynamics at early stages of Mycobacterium marinum infection in Dictyostelium. Cell Microbiol 17:1332–1349

    Article  CAS  PubMed  Google Scholar 

  48. Veltman DM, Akar G, Bosgraaf L, Van Haastert PJM (2009) A new set of small, extrachromosomal expression vectors for Dictyostelium discoideum. Plasmid 61:110–118

    Article  CAS  PubMed  Google Scholar 

  49. Johansson J, Karlsson A, Bylund J, Welin A (2015) Phagocyte interactions with Mycobacterium tuberculosis--Simultaneous analysis of phagocytosis, phagosome maturation and intracellular replication by imaging flow cytometry. J Immunol Methods 427:73–84

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the laboratory of H.H. was supported by the Swiss National Science Foundation (SNF; 31003A_153200, 31003A_175557), the Novartis Foundation for Medical-Biological Research, the OPO foundation, and the Center of Microscopy and Image Analysis, University of Zürich (UZH). A.W. was supported by the Swedish Society of Medicine, the Linköping Society of Medicine, the Medical Inflammation and Infection Centre at Linköping University, and the Åke Wiberg Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Imaging flow cytometry was performed using equipment of the Flow Cytometry Unit, Core Facility, Medical Faculty, Linköping University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Hilbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Welin, A., Hüsler, D., Hilbi, H. (2023). Imaging Flow Cytometry of Legionella-Containing Vacuoles in Intact and Homogenized Wild-Type and Mutant Dictyostelium. In: Barteneva, N.S., Vorobjev, I.A. (eds) Spectral and Imaging Cytometry. Methods in Molecular Biology, vol 2635. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3020-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3020-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3019-8

  • Online ISBN: 978-1-0716-3020-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics