Skip to main content

Updated Overview of TALEN Construction Systems

  • Protocol
  • First Online:
Genome Editing in Animals

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2637))

Abstract

Transcription activator-like effector (TALE) nuclease (TALEN) is the second-generation genome editing tool consisting of TALE protein containing customizable DNA-binding repeats and nuclease domain of FokI enzyme. Each DNA-binding repeat recognizes one base of double-strand DNA, and functional TALEN can be created by a simple modular assembly of these repeats. To easily and efficiently assemble the highly repetitive DNA-binding repeat arrays, various construction systems such as Golden Gate assembly, serial ligation, and ligation-independent cloning have been reported. In this chapter, we summarize the updated situation of these systems and publicly available reagents and protocols, enabling optimal selection of best suited systems for every researcher who wants to utilize TALENs in various research fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sakuma T, Yamamoto T (2015) CRISPR/Cas9: the leading edge of genome editing technology. In: Yamamoto T (ed) Targeted genome editing using site-specific nucleases: ZFNs, TALENs, and the CRISPR/Cas9 system. Springer Japan, Tokyo, pp 25–41

    Chapter  Google Scholar 

  2. Sakuma T, Woltjen K (2014) Nuclease-mediated genome editing: at the front-line of functional genomics technology. Develop Growth Differ 56:2–13

    Article  CAS  Google Scholar 

  3. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  Google Scholar 

  4. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    Article  CAS  Google Scholar 

  5. Sakuma T, Ochiai H, Kaneko T, Mashimo T, Tokumasu D, Sakane Y, Suzuki K, Miyamoto T, Sakamoto N, Matsuura S, Yamamoto T (2013) Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci Rep 3:3379

    Article  Google Scholar 

  6. Tochio N, Umehara K, Uewaki JI, Flechsig H, Kondo M, Dewa T, Sakuma T, Yamamoto T, Saitoh T, Togashi Y, Tate SI (2016) Non-RVD mutations that enhance the dynamics of the TAL repeat array along the superhelical axis improve TALEN genome editing efficacy. Sci Rep 6:37887

    Article  CAS  Google Scholar 

  7. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  Google Scholar 

  8. Mussolino C, Morbitzer R, Lütge F, Dannemann N, Lahaye T, Cathomen T (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39:9283–9293

    Article  CAS  Google Scholar 

  9. Guilinger JP, Pattanayak V, Reyon D, Tsai SQ, Sander JD, Joung JK, Liu DR (2014) Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 11:429–435

    Article  CAS  Google Scholar 

  10. Kamens J (2015) The Addgene repository: an international nonprofit plasmid and data resource. Nucleic Acids Res 43(Database issue):D1152–D1157

    Article  CAS  Google Scholar 

  11. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647

    Article  Google Scholar 

  12. Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4:e5553

    Article  Google Scholar 

  13. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  CAS  Google Scholar 

  14. Sakuma T, Hosoi S, Woltjen K, Suzuki K, Kashiwagi K, Wada H, Ochiai H, Miyamoto T, Kawai N, Sasakura Y, Matsuura S, Okada Y, Kawahara A, Hayashi S, Yamamoto T (2013) Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes Cells 18:315–326

    Article  CAS  Google Scholar 

  15. Miyanari Y, Ziegler-Birling C, Torres-Padilla ME (2013) Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct Mol Biol 20:1321–1324

    Article  CAS  Google Scholar 

  16. Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, Tanaka M, Amano N, Watanabe A, Sakurai H, Yamamoto T, Yamanaka S, Hotta A (2015) Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep 4:143–154

    Article  CAS  Google Scholar 

  17. Ichiyanagi N, Fujimori K, Yano M, Ishihara-Fujisaki C, Sone T, Akiyama T, Okada Y, Akamatsu W, Matsumoto T, Ishikawa M, Nishimoto Y, Ishihara Y, Sakuma T, Yamamoto T, Tsuiji H, Suzuki N, Warita H, Aoki M, Okano H (2016) Establishment of in vitro FUS-associated familial amyotrophic lateral sclerosis model using human induced pluripotent stem cells. Stem Cell Rep 6:496–510

    Article  CAS  Google Scholar 

  18. Arazoe T, Ogawa T, Miyoshi K, Yamato T, Ohsato S, Sakuma T, Yamamoto T, Arie T, Kuwata S (2015) Tailor-made TALEN system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng 112:1335–1342

    Article  CAS  Google Scholar 

  19. Tsuboi Y, Sakuma T, Yamamoto T, Horiuchi H, Takahashi F, Igarashi K, Hagihara H, Takimura Y (2022) Gene manipulation in the Mucorales fungus Rhizopus oryzae using TALENs with exonuclease overexpression. FEMS Microbiol Lett 369:fnac010

    Article  Google Scholar 

  20. Kurita T, Moroi K, Iwai M, Okazaki K, Shimizu S, Nomura S, Saito F, Maeda S, Takami A, Sakamoto A, Ohta H, Sakuma T, Yamamoto T (2020) Efficient and multiplexable genome editing using Platinum TALENs in oleaginous microalga, Nannochloropsis oceanica NIES-2145. Genes Cells 25:695–702

    Article  CAS  Google Scholar 

  21. Kurita T, Iwai M, Moroi K, Okazaki K, Nomura S, Saito F, Maeda S, Takami A, Sakamoto A, Ohta H, Sakuma T, Yamamoto T (2022) Genome editing with removable TALEN vectors harboring a yeast centromere and autonomous replication sequence in oleaginous microalga. Sci Rep 12:2480

    Article  CAS  Google Scholar 

  22. Yasumoto S, Umemoto N, Lee HJ, Nakayasu M, Sawai S, Sakuma T, Yamamoto T, Mizutani M, Saito K, Muranaka T (2019) Efficient genome engineering using Platinum TALEN in potato. Plant Biotechnol (Tokyo) 36:167–173

    Article  CAS  Google Scholar 

  23. Sugi T, Sakuma T, Ohtani T, Yamamoto T (2014) Versatile strategy for isolating TALEN-mediated knockout mutants in Caenorhabditis elegans. Develop Growth Differ 56:78–85

    Article  CAS  Google Scholar 

  24. Hosoi S, Sakuma T, Sakamoto N, Yamamoto T (2014) Targeted mutagenesis in sea urchin embryos using TALENs. Develop Growth Differ 56:92–97

    Article  CAS  Google Scholar 

  25. Treen N, Yoshida K, Sakuma T, Sasaki H, Kawai N, Yamamoto T, Sasakura Y (2014) Tissue-specific and ubiquitous gene knockouts by TALEN electroporation provide new approaches to investigating gene function in Ciona. Development 141:481–487

    Article  CAS  Google Scholar 

  26. Hiruta C, Ogino Y, Sakuma T, Toyota K, Miyagawa S, Yamamoto T, Iguchi T (2014) Targeted gene disruption by use of transcription activator-like effector nuclease (TALEN) in the water flea Daphnia pulex. BMC Biotechnol 14:95

    Article  Google Scholar 

  27. Guo L, Yamashita H, Kou I, Takimoto A, Meguro-Horike M, Horike S, Sakuma T, Miura S, Adachi T, Yamamoto T, Ikegawa S, Hiraki Y, Shukunami C (2016) Functional investigation of a non-coding variant associated with adolescent idiopathic scoliosis in zebrafish: elevated expression of the ladybird homeobox gene causes body axis deformation. PLoS Genet 12:e1005802

    Article  Google Scholar 

  28. Matsuzaki Y, Sakuma T, Yamamoto T, Saya H (2017) Establishment of pten knockout medaka with transcription activator-like effector nucleases (TALENs) as a model of PTEN deficiency disease. PLoS One 12:e0186878

    Article  Google Scholar 

  29. Higuchi K, Kazeto Y, Ozaki Y, Yamaguchi T, Shimada Y, Ina Y, Soma S, Sakakura Y, Goto R, Matsubara T, Nishiki I, Iwasaki Y, Yasuike M, Nakamura Y, Matsuura A, Masuma S, Sakuma T, Yamamoto T, Masaoka T, Kobayashi T, Fujiwara A, Gen K (2019) Targeted mutagenesis of the ryanodine receptor by Platinum TALENs causes slow swimming behaviour in Pacific bluefin tuna (Thunnus orientalis). Sci Rep 9:13871

    Article  Google Scholar 

  30. Pandey D, Matsubara T, Saito T, Kazeto Y, Gen K, Sakuma T, Yamamoto T, Mekuchi M, Goto R (2021) TALEN-mediated gene editing of slc24a5 (solute carrier family 24, member 5) in kawakawa, Euthynnus affinis. J Mar Sci Eng 9:1378

    Article  Google Scholar 

  31. Hayashi T, Sakamoto K, Sakuma T, Yokotani N, Inoue T, Kawaguchi E, Agata K, Yamamoto T, Takeuchi T (2014) TALENs efficiently disrupt the target gene in Iberian ribbed newts (Pleurodeles waltl), an experimental model animal for regeneration. Develop Growth Differ 56:115–121

    Article  CAS  Google Scholar 

  32. Nakagawa Y, Yamamoto T, Suzuki K, Araki K, Takeda N, Ohmuraya M, Sakuma T (2014) Screening methods to identify TALEN-mediated knockout mice. Exp Anim 63:79–84

    Article  CAS  Google Scholar 

  33. Watanabe M, Nakano K, Uchikura A, Matsunari H, Yashima S, Umeyama K, Takayanagi S, Sakuma T, Yamamoto T, Morita S, Horii T, Hatada I, Nishinakamura R, Nakauchi H, Nagashima H (2019) Anephrogenic phenotype induced by SALL1 gene knockout in pigs. Sci Rep 9:8016

    Article  Google Scholar 

  34. Sato K, Oiwa R, Kumita W, Henry R, Sakuma T, Ito R, Nozu R, Inoue T, Katano I, Sato K, Okahara N, Okahara J, Shimizu Y, Yamamoto M, Hanazawa K, Kawakami T, Kametani Y, Suzuki R, Takahashi T, Weinstein EJ, Yamamoto T, Sakakibara Y, Habu S, Hata J, Okano H, Sasaki E (2016) Generation of a nonhuman primate model of severe combined immunodeficiency using highly efficient genome editing. Cell Stem Cell 19:127–138

    Article  CAS  Google Scholar 

  35. Takashina T, Koyama T, Nohara S, Hasegawa M, Ishiguro A, Iijima K, Lu J, Shimura M, Okamura T, Sakuma T, Yamamoto T, Ishizaka Y (2018) Identification of a cell-penetrating peptide applicable to a protein-based transcription activator-like effector expression system for cell engineering. Biomaterials 173:11–21

    Article  CAS  Google Scholar 

  36. Teratake Y, Takashina T, Iijima K, Sakuma T, Yamamoto T, Ishizaka Y (2020) Development of a protein-based system for transient epigenetic repression of immune checkpoint molecule and enhancement of antitumour activity of natural killer cells. Br J Cancer 122:823–834

    Article  CAS  Google Scholar 

  37. Sakuma T, Yamamoto T (2016) Engineering customized TALENs using the Platinum Gate TALEN Kit. Methods Mol Biol 1338:61–70

    Article  CAS  Google Scholar 

  38. Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F (2012) A transcription activator-like effector toolbox for genome engineering. Nat Protoc 7:171–192

    Article  CAS  Google Scholar 

  39. Ma H, Reyes-Gutierrez P, Pederson T (2013) Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors. Proc Natl Acad Sci U S A 110:21048–21053

    Article  CAS  Google Scholar 

  40. Ding Q, Lee YK, Schaefer EA, Peters DT, Veres A, Kim K, Kuperwasser N, Motola DL, Meissner TB, Hendriks WT, Trevisan M, Gupta RM, Moisan A, Banks E, Friesen M, Schinzel RT, Xia F, Tang A, Xia Y, Figueroa E, Wann A, Ahfeldt T, Daheron L, Zhang F, Rubin LL, Peng LF, Chung RT, Musunuru K, Cowan CA (2013) A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 12:238–251

    Article  CAS  Google Scholar 

  41. Ma AC, Lee HB, Clark KJ, Ekker SC (2013) High efficiency in vivo genome engineering with a simplified 15-RVD GoldyTALEN design. PLoS One 8:e65259

    Article  CAS  Google Scholar 

  42. Ma AC, McNulty MS, Poshusta TL, Campbell JM, Martínez-Gálvez G, Argue DP, Lee HB, Urban MD, Bullard CE, Blackburn PR, Man TK, Clark KJ, Ekker SC (2016) FusX: a rapid one-step transcription activator-like effector assembly system for genome science. Hum Gene Ther 27:451–463

    Article  CAS  Google Scholar 

  43. Valton J, Dupuy A, Daboussi F, Thomas S, Maréchal A, Macmaster R, Melliand K, Juillerat A, Duchateau P (2012) Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem 287:38427–38432

    Article  CAS  Google Scholar 

  44. Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29:697–698

    Article  CAS  Google Scholar 

  45. Reyon D, Khayter C, Regan MR, Joung JK, Sander JD (2012) Engineering designer transcription activator-like effector nucleases (TALENs) by REAL or REAL-Fast assembly. Curr Protoc Mol Biol Chapter 12:Unit 12.15

    Google Scholar 

  46. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30:460–465

    Article  CAS  Google Scholar 

  47. Reyon D, Maeder ML, Khayter C, Tsai SQ, Foley JE, Sander JD, Joung JK (2013) Engineering customized TALE nucleases (TALENs) and TALE transcription factors by fast ligation-based automatable solid-phase high-throughput (FLASH) assembly. Curr Protoc Mol Biol Chapter 12:Unit 12.16

    Google Scholar 

  48. Maeder ML, Linder SJ, Reyon D, Angstman JF, Fu Y, Sander JD, Joung JK (2013) Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods 10:243–245

    Article  CAS  Google Scholar 

  49. Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, Joung JK, Bernstein BE (2013) Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 31:1133–1136

    Article  CAS  Google Scholar 

  50. Schmid-Burgk JL, Schmidt T, Kaiser V, Höning K, Hornung V (2013) A ligation-independent cloning technique for high-throughput assembly of transcription activator–like effector genes. Nat Biotechnol 31:76–81

    Article  CAS  Google Scholar 

  51. Schmid-Burgk JL, Schmidt T, Hornung V (2015) Ligation-independent cloning (LIC) assembly of TALEN genes. Methods Mol Biol 1239:161–169

    Article  CAS  Google Scholar 

  52. Briggs AW, Rios X, Chari R, Yang L, Zhang F, Mali P, Church GM (2012) Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res 40:e117

    Article  CAS  Google Scholar 

  53. Wang S, Li W, Wang S, Hu B (2014) Rapid and efficient assembly of transcription activator-like effector genes by USER cloning. J Genet Genomics 41:339–347

    Article  Google Scholar 

  54. Yang J, Yuan P, Wen D, Sheng Y, Zhu S, Yu Y, Gao X, Wei W (2013) ULtiMATE system for rapid assembly of customized TAL effectors. PLoS One 8:e75649

    Article  CAS  Google Scholar 

  55. Gogolok S, Garcia-Diaz C, Pollard SM (2016) STAR: a simple TAL effector assembly reaction using isothermal assembly. Sci Rep 6:33209

    Article  CAS  Google Scholar 

  56. Wang F, Zhang H, Gao J, Chen F, Chen S, Zhang C, Peng G (2016) Rapid and accurate synthesis of TALE genes from synthetic oligonucleotides. BioTechniques 60:299–305

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Japan Society for the Promotion of Science (16K18478 to T.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tetsushi Sakuma or Takashi Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sakuma, T., Yamamoto, T. (2023). Updated Overview of TALEN Construction Systems. In: Hatada, I. (eds) Genome Editing in Animals. Methods in Molecular Biology, vol 2637. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3016-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3016-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3015-0

  • Online ISBN: 978-1-0716-3016-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics