Skip to main content

Design Principles Underlying Robust Adaptation of Complex Biochemical Networks

  • Protocol
  • First Online:
Computational Modeling of Signaling Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2634))

Abstract

Biochemical networks are often characterized by tremendous complexity—both in terms of the sheer number of interacting molecules (“nodes”) and in terms of the varied and incompletely understood interactions among these molecules (“interconnections” or “edges”). Strikingly, the vast and intricate networks of interacting proteins that exist within each living cell have the capacity to perform remarkably robustly, and reproducibly, despite significant variations in concentrations of the interacting components from one cell to the next and despite mutability over time of biochemical parameters. Here we consider the ubiquitously observed and fundamentally important signalling response known as robust perfect adaptation (RPA). We have recently shown that all RPA-capable networks, even the most complex ones, must satisfy an extremely rigid set of design principles, and are modular, being decomposable into just two types of network building-blocks—opposer modules and balancer modules. Here we present an overview of the design principles that characterize all RPA-capable network topologies through a detailed examination of a collection of simple examples. We also introduce a diagrammatic method for studying the potential of a network to exhibit RPA, which may be applied without a detailed knowledge of the complex mathematical principles governing RPA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wagner A (2013) Robustness and evolvability in living systems, vol 24. Princeton University Press

    Book  Google Scholar 

  2. Araujo RP, Liotta LA, Petricoin EF (2007) Proteins, drug targets and the mechanisms they control: the simple truth about complex networks. Nat Rev Drug Discov 6(11):871–880

    Article  CAS  PubMed  Google Scholar 

  3. Whitacre JM (2012) Biological robustness: paradigms, mechanisms, and systems principles. Front Genet 3:67

    Article  PubMed  PubMed Central  Google Scholar 

  4. Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387(6636):913–917

    Article  CAS  PubMed  Google Scholar 

  5. Araujo RP, Liotta LA (2018) The topological requirements for robust perfect adaptation in networks of any size. Nat Commun 9(1):1–12

    Article  CAS  Google Scholar 

  6. Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci 97(9):4649–4653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoeller O, Gong D, Weiner OD (2014) How to understand and outwit adaptation. Dev Cell 28(6):607–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397(6715):168–171

    Article  CAS  PubMed  Google Scholar 

  9. Muzzey D, Gómez-Uribe CA, Mettetal JT, van Oudenaarden A (2009) A systems-level analysis of perfect adaptation in yeast osmoregulation. Cell 138(1):160–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. El-Samad H, Goff JP, Khammash M (2002) Calcium homeostasis and parturient hypocalcemia: an integral feedback perspective. J Theor Biol 214(1):17–29

    Article  CAS  PubMed  Google Scholar 

  11. Kaupp UB (2010) Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 11(3):188–200

    Article  CAS  PubMed  Google Scholar 

  12. Yau KW, Hardie RC (2009) Phototransduction motifs and variations. Cell 139(2):246–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ben-Zvi D, Barkai N (2010) Scaling of morphogen gradients by an expansion-repression integral feedback control. Proc Natl Acad Sci 107(15):6924–6929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eldar A, Dorfman R, Weiss D, Ashe H, Shilo BZ, Barkai N (2002) Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419(6904):304–308

    Article  CAS  PubMed  Google Scholar 

  15. Yadid G, Overstreet DH, Zangen A (2001) Limbic dopaminergic adaptation to a stressful stimulus in a rat model of depression. Brain Res 896(1–2):43–47

    Article  CAS  PubMed  Google Scholar 

  16. Medina-Gomez G, Yetukuri L, Velagapudi V, Campbell M, Blount M, Jimenez-Linan M, Ros M, Orešič M, Vidal-Puig A (2009) Adaptation and failure of pancreatic β cells in murine models with different degrees of metabolic syndrome. Dis Model Mech 2(11–12):582–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sturgeon JA, Zautra AJ (2010) Resilience: a new paradigm for adaptation to chronic pain. Curr Pain Headache Rep 14(2):105–112

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fodale V, Pierobon M, Liotta L, Petricoin E (2011) Mechanism of cell adaptation: when and how do cancer cells develop chemoresistance? Cancer J 17(2):89–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Araujo RP, Petricoin EF, Liotta LA (2007) Mathematical modeling of the cancer cell’s control circuitry: paving the way to individualized therapeutic strategies. Curr Signal Transduction Ther 2(2):145–155

    Article  CAS  Google Scholar 

  20. Geho DH, Petricoin EF, Liotta LA, Araujo RP (2005) Modeling of protein signaling networks in clinical proteomics. In: Cold Spring Harbor symposia on quantitative biology, vol 70. Cold Spring Harbor Laboratory Press, pp 517–524

    Google Scholar 

  21. Ma W, Trusina A, El-Samad H, Lim WA, Tang C (2009) Defining network topologies that can achieve biochemical adaptation. Cell 138(4):760–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Briat C, Gupta A, Khammash M (2016) Antithetic integral feedback ensures robust perfect adaptation in noisy biomolecular networks. Cell Syst 2(1):15–26

    Article  CAS  PubMed  Google Scholar 

  23. Aoki SK, Lillacci G, Gupta A, Baumschlager A, Schweingruber D, Khammash M (2019) A universal biomolecular integral feedback controller for robust perfect adaptation. Nature 570(7762):533–537

    Article  CAS  PubMed  Google Scholar 

  24. Qian Y, Del Vecchio D (2018) Realizing ‘integral control’ in living cells: how to overcome leaky integration due to dilution? J R Soc Interface 15(139):20170902

    Article  PubMed  PubMed Central  Google Scholar 

  25. Del Vecchio D, Dy AJ, Qian Y (2016) Control theory meets synthetic biology. J R Soc Interface 13(120):20160380

    Article  PubMed  PubMed Central  Google Scholar 

  26. Francis BA, Wonham WM (1975) The internal model principle for linear multivariable regulators. Appl Math Optim 2(2):170–194

    Article  Google Scholar 

  27. Francis BA, Wonham WM (1976) The internal model principle of control theory. Automatica 12(5):457–465

    Article  Google Scholar 

  28. Ferrell JE Jr (2016) Perfect and near-perfect adaptation in cell signaling. Cell Syst 2(2):62–67

    Article  CAS  PubMed  Google Scholar 

  29. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15(2):221–231

    Article  CAS  PubMed  Google Scholar 

  30. Shinar G, Feinberg M (2010) Structural sources of robustness in biochemical reaction networks. Science 327(5971):1389–1391

    Article  CAS  PubMed  Google Scholar 

  31. Xiao F, Doyle JC (2018, December) Robust perfect adaptation in biomolecular reaction networks. In: 2018 IEEE conference on decision and control (CDC). IEEE, pp 4345–4352

    Chapter  Google Scholar 

Download references

Acknowledgments

Robyn Araujo is the recipient of an Australian Research Council (ARC) Future Fellowship (project number FT190100645) funded by the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robyn P. Araujo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Araujo, R.P., Liotta, L.A. (2023). Design Principles Underlying Robust Adaptation of Complex Biochemical Networks. In: Nguyen, L.K. (eds) Computational Modeling of Signaling Networks. Methods in Molecular Biology, vol 2634. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3008-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3008-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3007-5

  • Online ISBN: 978-1-0716-3008-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics