Skip to main content

Multiplexed Bead-Based Peptide Immunoassays for the Detection of Antibody Reactivities

  • Protocol
  • First Online:
Serum/Plasma Proteomics

Abstract

Antigenic peptides are commonly used in serological test settings such as enzyme-linked immunosorbent assays (ELISA) to determine reactive antibodies (ABs) from serum or plasma samples. The use of synthetic peptides provides advantages like lower production effort and easier incorporation of specific chemical modifications compared to full-length antigenic proteins. Multiplexed antibody (AB) profiling methods such as microarray technologies enable the simultaneous identification of multiple novel biomarkers for the use in early disease diagnostics, vaccine development, or monitoring of immune responses. Despite various benefits they still show major limitations which can be overcome with bead-based assay technologies like the multi-analyte profiling (xMAP) technology developed by Luminex. In this chapter we introduce our established workflow for AB profiling with a multiplexed bead-based peptide immunoassay. The workflow is based on copper-catalyzed click chemistry to immobilize designed synthetic peptides onto uniquely color-coded paramagnetic beads in an orientation-specific manner. The individual peptide-coupled beads can be distinguished by their unique emission spectra during readout in the xMAP instrument and therefore allow testing of up to 500 different antigenic peptides in one multiplexed reaction. The multistep process described in this chapter is divided into separate sections for peptide design, coupling of functionalized peptides to MagPlex beads via click chemistry, confirmation of successful peptide immobilization, processing of serum or plasma samples, or preferably purified IgG thereof, with the multiplexed bead-based peptide immunoassay and subsequent data export and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kapingidza AB, Kowal K, Chruszcz M (2020) Antigen-antibody complexes. Subcell Biochem 94:465–497. https://doi.org/10.1007/978-3-030-41769-7_19

    Article  CAS  Google Scholar 

  2. Buus S, Rockberg J, Forsström B et al (2012) High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays. Mol Cell Proteomics 11:1790–1800. https://doi.org/10.1074/mcp.M112.020800

    Article  CAS  Google Scholar 

  3. Ayoglu B, Schwenk JM, Nilsson P (2016) Antigen arrays for profiling autoantibody repertoires. Bioanalysis 8:1105–1126. https://doi.org/10.4155/bio.16.31

    Article  CAS  Google Scholar 

  4. Jones AG, Hattersley AT (2013) The clinical utility of C-peptide measurement in the care of patients with diabetes. Diabet Med 30:803–817. https://doi.org/10.1111/dme.12159

    Article  CAS  Google Scholar 

  5. Henri C, Heinonen T, Tardif J-C (2016) The role of biomarkers in decreasing risk of cardiac toxicity after cancer therapy. Biomark Cancer 8s2:BIC.S31798. https://doi.org/10.4137/bic.s31798

    Article  CAS  Google Scholar 

  6. Burbelo PD, Ching KH, Bush ER et al (2010) Antibody-profiling technologies for studying humoral responses to infectious agents. Expert Rev Vaccines 9:567–578. https://doi.org/10.1586/erv.10.50

    Article  CAS  Google Scholar 

  7. Liotta LA, Espina V, Mehta AI et al (2003) Protein microarrays: meeting analytical challenges for clinical applications. Cancer Cell 3:317–325. https://doi.org/10.1016/S1535-6108(03)00086-2

    Article  CAS  Google Scholar 

  8. Russo G, Zegar C, Giordano A (2003) Advantages and limitations of microarray technology in human cancer. Oncogene 22:6497–6507. https://doi.org/10.1038/sj.onc.1206865

    Article  CAS  Google Scholar 

  9. Krishnan VV, Selvan SR, Parameswaran N et al (2018) Proteomic profiles by multiplex microsphere suspension array. J Immunol Methods 461:1–14. https://doi.org/10.1016/j.jim.2018.07.002

    Article  CAS  Google Scholar 

  10. Luminex (2018) xMAP Cookbook. Luminex 148

    Google Scholar 

  11. Gazitt T, Lood C, Elkon KB (2016) Citrullination in rheumatoid arthritis—a process promoted by neutrophil lysis? Rambam Maimonides Med J 7:e0027. https://doi.org/10.5041/rmmj.10254

    Article  Google Scholar 

  12. Scherer HU, van der Woude D, Toes REM (2022) From risk to chronicity: evolution of autoreactive B cell and antibody responses in rheumatoid arthritis. Nat Rev Rheumatol. https://doi.org/10.1038/s41584-022-00786-4

  13. Fischer MJE (2010) Amine coupling through EDC/NHS: a practical approach. Methods Mol Biol 627:55–73. https://doi.org/10.1007/978-1-60761-670-2_3

    Article  CAS  Google Scholar 

  14. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chemie - Int Ed 40:2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5

  15. Presolski SI, Hong VP, Finn MG (2011) Copper-catalyzed Azide-Alkyne click chemistry for bioconjugation. Curr Protoc Chem Biol 3:153–162. https://doi.org/10.1002/9780470559277.ch110148

    Article  Google Scholar 

  16. Milchram L, Soldo R, Regele V et al (2022) A novel click chemistry-based peptide ELISA protocol: development and technical evaluation. BioTechniques 72:1–9. https://doi.org/10.2144/btn-2021-0107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Silvia Schönthaler or Jasmin Huber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schönthaler, S. et al. (2023). Multiplexed Bead-Based Peptide Immunoassays for the Detection of Antibody Reactivities. In: Greening, D.W., Simpson, R.J. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 2628. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2978-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2978-9_30

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2977-2

  • Online ISBN: 978-1-0716-2978-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics