Skip to main content

Glycomics-Assisted Glycoproteomics Enables Deep and Unbiased N-Glycoproteome Profiling of Complex Biological Specimens

  • Protocol
  • First Online:
Serum/Plasma Proteomics

Abstract

Mass spectrometry-driven glycomics and glycoproteomics, the system-wide profiling of detached glycans and intact glycopeptides from biological samples, respectively, are powerful approaches to interrogate the heterogenous glycoproteome. Efforts to develop integrated workflows employing both glycomics and glycoproteomics have been invested since the concerted application of these complementary approaches enables a deeper exploration of the glycoproteome. This protocol paper outlines, step-by-step, an integrated -omics technology, the “glycomics-assisted glycoproteomics” method, that first establishes the N-glycan fine structures and their quantitative distribution pattern of protein extracts via porous graphitized carbon-LC-MS/MS. The N-glycome information is then used to augment and guide the challenging reversed-phase LC-MS/MS-based profiling of intact N-glycopeptides from the same protein samples. Experimental details and considerations relating to the sample preparation and the N-glycomics and N-glycoproteomics data collection, analysis, and integration are discussed. Benefits of the glycomics-assisted glycoproteomics method, which can be readily applied to both simple and complex biological specimens such as protein extracts from cells, tissues, and bodily fluids (e.g., serum), include quantitative information of the protein carriers and site(s) of glycosylation, site occupancy, and the site-specific glycan structures directly from biological samples. The glycomics-assisted glycoproteomics method therefore facilitates a comprehensive view of the complexity and dynamics of the heterogenous glycoproteome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Varki A (2016) Biological roles of glycans. Glycobiology 27(1):3–49. https://doi.org/10.1093/glycob/cww086

    Article  CAS  Google Scholar 

  2. Reily C, Stewart TJ, Renfrow MB, Novak J (2019) Glycosylation in health and disease. Nat Rev Nephrol 15(6):346–366. https://doi.org/10.1038/s41581-019-0129-4

    Article  Google Scholar 

  3. Chernykh A, Kawahara R, Thaysen-Andersen M (2021) Towards structure-focused glycoproteomics. Biochem Soc Trans. https://doi.org/10.1042/BST20200222

  4. Thaysen-Andersen M, Packer NH, Schulz BL (2016) Maturing glycoproteomics technologies provide unique structural insights into the N-glycoproteome and its regulation in health and disease. Mol Cell Proteomics 15(6):1773–1790. https://doi.org/10.1074/mcp.O115.057638

    Article  CAS  Google Scholar 

  5. Abrahams JL, Taherzadeh G, Jarvas G, Guttman A, Zhou Y, Campbell MP (2020) Recent advances in glycoinformatic platforms for glycomics and glycoproteomics. Curr Opin Struct Biol 62:56–69. https://doi.org/10.1016/j.sbi.2019.11.009

    Article  CAS  Google Scholar 

  6. Hu H, Khatri K, Zaia J (2017) Algorithms and design strategies towards automated glycoproteomics analysis. Mass Spectrom Rev 36(4):475–498. https://doi.org/10.1002/mas.21487

    Article  CAS  Google Scholar 

  7. Peng W, Gutierrez Reyes CD, Gautam S, Yu A, Cho BG, Goli M, Donohoo K, Mondello S, Kobeissy F, Mechref Y (2021) MS-based glycomics and glycoproteomics methods enabling isomeric characterization. Mass Spectrom Rev. https://doi.org/10.1002/mas.21713

  8. Gaunitz S, Nagy G, Pohl NL, Novotny MV (2017) Recent advances in the analysis of complex glycoproteins. Anal Chem 89(1):389–413. https://doi.org/10.1021/acs.analchem.6b04343

    Article  CAS  Google Scholar 

  9. Thomas DR, Scott NE (2021) Glycoproteomics: growing up fast. Curr Opin Struct Biol 68:18–25. https://doi.org/10.1016/j.sbi.2020.10.028

    Article  CAS  Google Scholar 

  10. West CM, Malzl D, Hykollari A, Wilson IBH (2021) Glycomics, glycoproteomics, and glycogenomics: an inter-taxa evolutionary perspective. Mol Cell Proteomics 20:100024. https://doi.org/10.1074/mcp.R120.002263

    Article  CAS  Google Scholar 

  11. Thaysen-Andersen M, Kolarich D, Packer NH (2021) Glycomics & Glycoproteomics: from analytics to function. Mol Omics 17(1):8–10. https://doi.org/10.1039/d0mo90019b

    Article  CAS  Google Scholar 

  12. Oliveira T, Thaysen-Andersen M, Packer NH, Kolarich D (2021) The Hitchhiker’s guide to glycoproteomics. Biochem Soc Trans 49(4):1643–1662. https://doi.org/10.1042/BST20200879

    Article  CAS  Google Scholar 

  13. Bagdonaite I, Malaker SA, Polasky DA, Riley NM, Schjoldager K, Vakhrushev SY, Halim A, Aoki-Kinoshita KF, Nesvizhskii AI, Bertozzi CR, Wandall HH, Parker BL, Thaysen-Andersen M, Scott NE (2022) Glycoproteomics. Nat Rev Methods Primers 2(1):48. https://doi.org/10.1038/s43586-022-00128-4

    Article  CAS  Google Scholar 

  14. Rudd PM, Karlsson NG, Khoo KH, Thaysen-Andersen M, Wells L, Packer NH (2022) Glycomics and glycoproteomics. In: Th VA, Cummings RD et al (eds) Essentials of glycobiology, Cold Spring Harbor (NY), pp 689–704. https://doi.org/10.1101/glycobiology.4e.51

  15. Madunić K, Zhang T, Mayboroda OA, Holst S, Stavenhagen K, Jin C, Karlsson NG, Lageveen-Kammeijer GSM, Wuhrer M (2021) Colorectal cancer cell lines show striking diversity of their O-glycome reflecting the cellular differentiation phenotype. Cell Mol Life Sci 78(1):337–350. https://doi.org/10.1007/s00018-020-03504-z

    Article  CAS  Google Scholar 

  16. Parker R, Partridge T, Wormald C, Kawahara R, Stalls V, Aggelakopoulou M, Parker J, Powell Doherty R, Ariosa Morejon Y, Lee E, Saunders K, Haynes BF, Acharya P, Thaysen-Andersen M, Borrow P, Ternette N (2021) Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells. Cell Rep 35(8). https://doi.org/10.1016/j.celrep.2021.109179

  17. Zhao P, Praissman JL, Grant OC, Cai Y, Xiao T, Rosenbalm KE, Aoki K, Kellman BP, Bridger R, Barouch DH (2020) Virus-receptor interactions of glycosylated SARS-CoV-2 spike and human ACE2 receptor. Cell Host Microbe 28(4):586–601. e586

    Google Scholar 

  18. Chatterjee S, Kawahara R, Tjondro HC, Shaw DR, Nenke MA, Torpy DJ, Thaysen-Andersen M (2021) Serum N-Glycomics stratifies Bacteremic patients infected with different pathogens. J Clin Med 10(3):516. https://doi.org/10.3390/jcm10030516

  19. Osimanjiang W, Roballo KCS, Houck BD, Ito M, Antonopoulos A, Dell A, Haslam SM, Bushman JS (2020) Analysis of N- and O-linked glycosylation: differential glycosylation after rat spinal cord injury. J Neurotrauma 37(18):1954–1962. https://doi.org/10.1089/neu.2019.6974

    Article  Google Scholar 

  20. Chatterjee S, Ugonotti J, Lee LY, Everest-Dass A, Kawahara R, Thaysen-Andersen M (2021) Trends in oligomannosylation and α1,2-mannosidase expression in human cancers. Oncotarget 12(21):2188–2205. https://doi.org/10.18632/oncotarget.28064

    Article  Google Scholar 

  21. Chang D, Klein JA, Nalehua MR, Hackett WE, Zaia J (2021) Data-independent acquisition mass spectrometry for site-specific glycoproteomics characterization of SARS-CoV-2 spike protein. Anal Bioanal Chem 413(29):7305–7318. https://doi.org/10.1007/s00216-021-03643-7

    Article  CAS  Google Scholar 

  22. Pan J, Hu Y, Sun S, Chen L, Schnaubelt M, Clark D, Ao M, Zhang Z, Chan D, Qian J, Zhang H (2020) Glycoproteomics-based signatures for tumor subtyping and clinical outcome prediction of high-grade serous ovarian cancer. Nat Commun 11(1):6139. https://doi.org/10.1038/s41467-020-19976-3

    Article  CAS  Google Scholar 

  23. Venkatakrishnan V, Dieckmann R, Loke I, Tjondro HC, Chatterjee S, Bylund J, Thaysen-Andersen M, Karlsson NG, Karlsson-Bengtsson A (2020) Glycan analysis of human neutrophil granules implicates a maturation-dependent glycosylation machinery. J Biol Chem 295(36):12648–12660. https://doi.org/10.1074/jbc.RA120.014011

    Article  CAS  Google Scholar 

  24. Sethi MK, Downs M, Shao C, Hackett WE, Phillips JJ, Zaia J (2022) In-depth Matrisome and Glycoproteomic analysis of human brain glioblastoma versus control tissue. Mol Cell Proteomics 21(4):100216. https://doi.org/10.1016/j.mcpro.2022.100216

    Article  CAS  Google Scholar 

  25. Saraswat M, Makitie A, Tohmola T, Dickinson A, Saraswat S, Joenvaara S, Renkonen S (2018) Tongue cancer patients can be distinguished from healthy controls by specific N-Glycopeptides found in serum. Proteomics Clin Appl 12(6):e1800061. https://doi.org/10.1002/prca.201800061

    Article  CAS  Google Scholar 

  26. Takei D, Harada K, Nouso K, Miyahara K, Dohi C, Matsushita H, Kinugasa H, Hiraoka S, Nishimura SI, Okada H (2022) Clinical utility of a serum glycome analysis in patients with colorectal cancer. J Gastroenterol Hepatol 37(4):727–733. https://doi.org/10.1111/jgh.15781

    Article  CAS  Google Scholar 

  27. Reiding KR, Bondt A, Hennig R, Gardner RA, O’Flaherty R, Trbojevic-Akmacic I, Shubhakar A, Hazes JMW, Reichl U, Fernandes DL, Pucic-Bakovic M, Rapp E, Spencer DIR, Dolhain R, Rudd PM, Lauc G, Wuhrer M (2019) High-throughput serum N-Glycomics: method comparison and application to study rheumatoid arthritis and pregnancy-associated changes. Mol Cell Proteomics 18(1):3–15. https://doi.org/10.1074/mcp.RA117.000454

    Article  CAS  Google Scholar 

  28. Tomoda T, Nouso K, Kato H, Miyahara K, Dohi C, Morimoto Y, Kinugasa H, Akimoto Y, Matsumoto K, Yamamoto N, Noma Y, Horiguchi S, Tsutsumi K, Amano M, Nishimura S, Yamamoto K (2016) Alteration of serum N-glycan profile in patients with autoimmune pancreatitis. Pancreatology 16(1):44–51. https://doi.org/10.1016/j.pan.2015.11.002

    Article  CAS  Google Scholar 

  29. Caval T, Lin YH, Varkila M, Reiding KR, Bonten MJM, Cremer OL, Franc V, Heck AJR (2020) Glycoproteoform profiles of individual patients’ plasma Alpha-1-Antichymotrypsin are unique and extensively remodeled following a septic episode. Front Immunol 11:608466. https://doi.org/10.3389/fimmu.2020.608466

    Article  CAS  Google Scholar 

  30. Rosenbalm KE, Tiemeyer M, Wells L, Aoki K, Zhao P (2020) Glycomics-informed glycoproteomic analysis of site-specific glycosylation for SARS-CoV-2 spike protein. STAR Protoc 1(3):100214–100214. https://doi.org/10.1016/j.xpro.2020.100214

    Article  Google Scholar 

  31. Zhao P, Praissman JL, Grant OC, Cai Y, Xiao T, Rosenbalm KE, Aoki K, Kellman BP, Bridger R, Barouch DH, Brindley MA, Lewis NE, Tiemeyer M, Chen B, Woods RJ, Wells L (2020) Virus-receptor interactions of glycosylated SARS-CoV-2 Spike and human ACE2 receptor. Cell Host Microbe 28(4):586–601.e586. https://doi.org/10.1016/j.chom.2020.08.004

    Article  CAS  Google Scholar 

  32. Chandler KB, Mehta N, Leon DR, Suscovich TJ, Alter G, Costello CE (2019) Multi-isotype glycoproteomic characterization of serum antibody heavy chains reveals isotype- and subclass-specific N-glycosylation profiles. Mol Cell Proteomics 18(4):686–703. https://doi.org/10.1074/mcp.RA118.001185

    Article  CAS  Google Scholar 

  33. Thaysen-Andersen M, Chertova E, Bergamaschi C, Moh ES, Chertov O, Roser J, Sowder R, Bear J, Lifson J, Packer NH, Felber BK, Pavlakis GN (2016) Recombinant human heterodimeric IL-15 complex displays extensive and reproducible N- and O-linked glycosylation. Glycoconj J 33(3):417–433. https://doi.org/10.1007/s10719-015-9627-1

    Article  CAS  Google Scholar 

  34. Loke I, Ostergaard O, Heegaard NHH, Packer NH, Thaysen-Andersen M (2017) Paucimannose-rich N-glycosylation of Spatiotemporally regulated human neutrophil elastase modulates its immune functions. Mol Cell Proteomics 16(8):1507–1527. https://doi.org/10.1074/mcp.M116.066746

    Article  CAS  Google Scholar 

  35. Loke I, Packer NH, Thaysen-Andersen M (2015) Complementary LC-MS/MS-based N-glycan, N-glycopeptide, and intact N-glycoprotein profiling reveals unconventional Asn71-glycosylation of human neutrophil Cathepsin G. Biomol Ther 5(3):1832–1854. https://doi.org/10.3390/biom5031832

    Article  CAS  Google Scholar 

  36. Tjondro HC, Ugonotti J, Kawahara R, Chatterjee S, Loke I, Chen S, Soltermann F, Hinneburg H, Parker BL, Venkatakrishnan V, Dieckmann R, Grant OC, Bylund J, Rodger A, Woods RJ, Karlsson-Bengtsson A, Struwe WB, Thaysen-Andersen M (2021) Hyper-truncated Asn355- and Asn391-glycans modulate the activity of neutrophil granule myeloperoxidase. J Biol Chem 296:100144. https://doi.org/10.1074/jbc.RA120.016342

    Article  CAS  Google Scholar 

  37. Parker BL, Thaysen-Andersen M, Solis N, Scott NE, Larsen MR, Graham ME, Packer NH, Cordwell SJ (2013) Site-specific glycan-peptide analysis for determination of N-glycoproteome heterogeneity. J Proteome Res 12(12):5791–5800. https://doi.org/10.1021/pr400783j

    Article  CAS  Google Scholar 

  38. Jensen PH, Karlsson NG, Kolarich D, Packer NH (2012) Structural analysis of N- and O-glycans released from glycoproteins. Nat Protoc 7(7):1299–1310. https://doi.org/10.1038/nprot.2012.063

    Article  CAS  Google Scholar 

  39. Hinneburg H, Chatterjee S, Schirmeister F, Nguyen-Khuong T, Packer NH, Rapp E, Thaysen-Andersen M (2019) Post-Column Make-Up Flow (PCMF) enhances the performance of capillary-flow PGC-LC-MS/MS-based glycomics. Anal Chem 91(7):4559–4567. https://doi.org/10.1021/acs.analchem.8b05720

    Article  CAS  Google Scholar 

  40. Madunic K, Wagt S, Zhang T, Wuhrer M, Lageveen-Kammeijer GSM (2021) Dopant-enriched nitrogen gas for enhanced electrospray ionization of released Glycans in negative ion mode. Anal Chem 93(18):6919–6923. https://doi.org/10.1021/acs.analchem.1c00023

    Article  CAS  Google Scholar 

  41. Parker BL, Thaysen-Andersen M, Fazakerley DJ, Holliday M, Packer NH, James DE (2016) Terminal Galactosylation and sialylation switching on membrane glycoproteins upon TNF-alpha-induced insulin resistance in adipocytes. Mol Cell Proteomics 15(1):141–153. https://doi.org/10.1074/mcp.M115.054221

    Article  CAS  Google Scholar 

  42. Blazev R, Ashwood C, Abrahams JL, Chung LH, Francis D, Yang P, Watt KI, Qian H, Quaife-Ryan GA, Hudson JE, Gregorevic P, Thaysen-Andersen M, Parker BL (2021) Integrated Glycoproteomics identifies a role of N-glycosylation and Galectin-1 on Myogenesis and muscle development. Mol Cell Proteomics 20:100030. https://doi.org/10.1074/mcp.RA120.002166

    Article  CAS  Google Scholar 

  43. Kawahara R, Recuero S, Srougi M, Leite KRM, Thaysen-Andersen M, Palmisano G (2021) The complexity and dynamics of the tissue Glycoproteome associated with prostate cancer progression. Mol Cell Proteomics 20:100026. https://doi.org/10.1074/mcp.RA120.002320

    Article  CAS  Google Scholar 

  44. Thaysen-Andersen M, Venkatakrishnan V, Loke I, Laurini C, Diestel S, Parker BL, Packer NH (2015) Human neutrophils secrete bioactive paucimannosidic proteins from azurophilic granules into pathogen-infected sputum. J Biol Chem 290(14):8789–8802. https://doi.org/10.1074/jbc.M114.631622

    Article  CAS  Google Scholar 

  45. Kawahara R, Chernykh A, Alagesan K, Bern M, Cao W, Chalkley RJ, Cheng K, Choo MS, Edwards N, Goldman R, Hoffmann M, Hu Y, Huang Y, Kim JY, Kletter D, Liquet B, Liu M, Mechref Y, Meng B, Neelamegham S, Nguyen-Khuong T, Nilsson J, Pap A, Park GW, Parker BL, Pegg CL, Penninger JM, Phung TK, Pioch M, Rapp E, Sakalli E, Sanda M, Schulz BL, Scott NE, Sofronov G, Stadlmann J, Vakhrushev SY, Woo CM, Wu HY, Yang P, Ying W, Zhang H, Zhang Y, Zhao J, Zaia J, Haslam SM, Palmisano G, Yoo JS, Larson G, Khoo KH, Medzihradszky KF, Kolarich D, Packer NH, Thaysen-Andersen M (2021) Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nat Methods 18(11):1304–1316. https://doi.org/10.1038/s41592-021-01309-x

    Article  CAS  Google Scholar 

  46. Palmisano G, Larsen MR, Packer NH, Thaysen-Andersen M (2013) Structural analysis of glycoprotein sialylation – part II: LC-MS based detection. RSC Adv 3(45):22706–22726. https://doi.org/10.1039/C3RA42969E

    Article  CAS  Google Scholar 

  47. Young C, Condina MR, Briggs MT, Moh ESX, Kaur G, Oehler MK, Hoffmann P (2021) In-house packed porous graphitic carbon columns for liquid chromatography-mass spectrometry analysis of N-Glycans. Front Chem 9. https://doi.org/10.3389/fchem.2021.653959

  48. Cooper CA, Gasteiger E, Packer NH (2001) GlycoMod--a software tool for determining glycosylation compositions from mass spectrometric data. Proteomics 1(2):340–349. https://doi.org/10.1002/1615-9861(200102)1:23.0.CO;2-B

  49. Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslam SM (2008) GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res 7(4):1650–1659. https://doi.org/10.1021/pr7008252

  50. Schilling B, Rardin MJ, MacLean BX, Zawadzka AM, Frewen BE, Cusack MP, Sorensen DJ, Bereman MS, Jing E, Wu CC, Verdin E, Kahn CR, Maccoss MJ, Gibson BW (2012) Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: application to protein acetylation and phosphorylation. Mol Cell Proteomics 11(5):202–214. https://doi.org/10.1074/mcp.M112.017707

    Article  CAS  Google Scholar 

  51. Bern M, Kil YJ, Becker C (2012) Byonic: advanced peptide and protein identification software. Curr Protoc Bioinformatics Chapter 13:Unit13.20. https://doi.org/10.1002/0471250953.bi1320s40

    Article  Google Scholar 

  52. Cao W, Liu M, Kong S, Wu M, Zhang Y, Yang P (2021) Recent advances in software tools for more generic and precise intact glycopeptide analysis. Mol Cell Proteomics 20. https://doi.org/10.1074/mcp.R120.002090

  53. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://doi.org/10.1038/nbt.1511

    Article  CAS  Google Scholar 

  54. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805. https://doi.org/10.1021/pr101065j

    Article  CAS  Google Scholar 

  55. Saba J, Dutta S, Hemenway E, Viner R (2012) Increasing the productivity of glycopeptides analysis by using higher-energy collision dissociation-accurate mass-product-dependent electron transfer dissociation. Int J Proteomics 2012:560391. https://doi.org/10.1155/2012/560391

    Article  CAS  Google Scholar 

  56. Ugonotti J, Kawahara R, Loke I, Zhu Y, Chatterjee S, Tjondro HC, Sumer-Bayraktar Z, Neelamegham S, Thaysen-Andersen M (2021) N-acetyl-β-D-hexosaminidases mediate the generation of paucimannosidic proteins via a putative noncanonical truncation pathway in human neutrophils. Glycobiology 32(3):218–229. https://doi.org/10.1093/glycob/cwab108

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Prof. Giuseppe Palmisano is thanked for intellectual contributions to the protocol. T.H.C. was supported by an International Macquarie Research Excellence Scholarship (20224231). A.C. was supported by an Australian Government Research Training Program Scholarship. J.U. was supported by a Macquarie University Research Excellence Scholarship. B.L.P. was supported by a University of Melbourne Driving Research Momentum Fellowship. R.K. was supported by a Cancer Institute of New South Wales Fellowship (ECF181259). M.T.-A. was supported by an Australian Research Council Future Fellowship (FT210100455) and a Macquarie University Enterprise Partnership Scheme (175232162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Thaysen-Andersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chau, T.H., Chernykh, A., Ugonotti, J., Parker, B.L., Kawahara, R., Thaysen-Andersen, M. (2023). Glycomics-Assisted Glycoproteomics Enables Deep and Unbiased N-Glycoproteome Profiling of Complex Biological Specimens. In: Greening, D.W., Simpson, R.J. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 2628. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2978-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2978-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2977-2

  • Online ISBN: 978-1-0716-2978-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics