Skip to main content

Reconstitution of Organelle Transport Along Microtubules In Vitro

  • Protocol
  • First Online:
Dynein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2623))

  • 640 Accesses

Abstract

In this chapter, we describe methods for reconstituting and analyzing the transport of isolated endogenous cargoes in vitro. Intracellular cargoes are transported along microtubules by teams of kinesin and dynein motors and their cargo-specific adaptor proteins. Observations from living cells show that organelles and vesicular cargoes exhibit diverse motility characteristics. Yet, our knowledge of the molecular mechanisms by which intracellular transport is regulated is not well understood. Here, we describe step-by-step protocols for the extraction of phagosomes from cells at different stages of maturation, and reconstitution of their motility along microtubules in vitro. Quantitative immunofluorescence and photobleaching techniques are also described to measure the number of motors and adaptor proteins on these isolated cargoes. In addition, we describe techniques for tracking the motility of isolated cargoes along microtubules using TIRF microscopy and quantitative force measurements using an optical trap. These methods enable us to study how the sets of motors and adaptors that drive the transport of endogenous cargoes regulate their trafficking in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gross SP, Welte MA, Block SM, Wieschaus EF (2002) Coordination of opposite-polarity microtubule motors. J Cell Biol 156(4):715–724

    Article  CAS  Google Scholar 

  2. Welte MA (2004) Bidirectional transport along microtubules. Curr Biol 14(13):525–537

    Article  Google Scholar 

  3. Blehm BH, Schroer TA, Trybus KM, Chemla YR, Selvin PR (2013) In vivo optical trapping indicates kinesin’s stall force is reduced by dynein during intracellular transport. Proc Natl Acad Sci U S A 110(9):3381–3386

    Article  CAS  Google Scholar 

  4. Jenkins B, Decker H, Bentley M, Luisi J, Banker G (2012) A novel split kinesin assay identifies motor proteins that interact with distinct vesicle populations. J Cell Biol 198(4):749–761

    Article  CAS  Google Scholar 

  5. Chaudhary AR, Berger F, Berger CL, Hendricks AG (2018) Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams. Traffic 19(2):111–121

    Article  CAS  Google Scholar 

  6. Vershinin M, Carter BC, Razafsky DS, King SJ, Gross SP (2007) Multiple-motor based transport and regulation by tau. Proc Natl Acad U S A 104(1):87–92

    Article  CAS  Google Scholar 

  7. Ally S, Larson AG, Barlan K, Rice SE, Gelfand VI (2009) Opposite-polarity motors activate one another to trigger cargo transport in live cells. J Cell Biol 187(7):1071–1082

    Article  CAS  Google Scholar 

  8. Soppina V, Rai AK, Ramaiya AV, Barak P, Mallik R (2009) Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes. Proc Natl Acad U S A 106(46):19381–19386

    Article  CAS  Google Scholar 

  9. Hendricks AG, Holzbaur EL, Goldman YE (2012) Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors. Proc Natl Acad U S A 109(45):18447–18452

    Article  CAS  Google Scholar 

  10. Ferro LS, Can S, Turner MA, El-Shenawy MM, Yildiz A (2019) Kinesin and dynein use distinct mechanisms to bypass obstacles. elife 8:e48629

    Article  CAS  Google Scholar 

  11. Henrichs V, Grycova L, Barinka C, Nahacka Z, Neuzil J, Diez S, Rohlena J, Braun M, Lansky Z (2020) Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments. Nat Commun 11(1):3123

    Article  CAS  Google Scholar 

  12. Dixit R, Ross JL, Goldman YE, Holzbaur EL (2008) Differential regulation of dynein and kinesin motor proteins by tau. Science 319(5866):1086–1090

    Article  CAS  Google Scholar 

  13. Hoeprich GJ, Thompson AR, McVicker DP, Hancock WO, Berger CL (2014) Kinesin’s neck-linker determines its ability to navigate obstacles on the microtubule surface. Biophys J 106(8):1691–1700

    Article  CAS  Google Scholar 

  14. Monroy BY, Sawyer DL, Ackermann BE, Borden MM, Tan TC, Ori-McKenney K (2018) Competition between microtubule-associated proteins directs motor transport. Nat Commun 9(1):1487

    Article  Google Scholar 

  15. Hooikaas PJ, Martin M, Mühlethaler T et al (2019) MAP7 family proteins regulate kinesin-1 recruitment and activation. J Cell Biol 218(4):1298–1318

    Article  CAS  Google Scholar 

  16. Colin EC, Zala D, Liot G, Rangone H, Borrell-Pagès M, Li XJ, Saudou F, Humbert S (2008) Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J 27(15):2124–2134

    Article  CAS  Google Scholar 

  17. Satake T, Otsuki K, Banba Y, Suenaga J, Hirano H, Yamanaka Y, Ohno S, Hirai S (2013) The interaction of Kinesin-1 with its adaptor JIP1 can be regulated via proteins binding to the JIP1-PTB domain. BMC Cell Biol 14:12

    Article  CAS  Google Scholar 

  18. Fu MM, Holzbaur EL (2013) JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors. J Cell Biol 202(3):495–508

    Article  CAS  Google Scholar 

  19. Zhang J, Qiu R, Arst HN Jr, Peñalva MA, Xiang X (2014) HookA is a novel dynein-early endosome linker critical for cargo movement in vivo. J Cell Biol 204(6):1009–1026

    Article  CAS  Google Scholar 

  20. Olenick MA, Tokito M, Boczkowska M, Dominguez R, Holzbaur EL (2016) Hook adaptors induce unidirectional processive motility by enhancing the dynein-dynactin interaction. J Biol Chem 291(35):18239–18251

    Article  CAS  Google Scholar 

  21. Olenick MA, Dominguez R, Holzbaur EL (2019) Dynein activator Hook1 is required for trafficking of BDNF-signaling endosomes in neurons. J Cell Biol 218(1):220–233

    Article  CAS  Google Scholar 

  22. Kesisova IA, Robinson BP, Spiliotos ET (2021) A septin GTPase scaffold of dynein-dynactin motors triggers retrograde lysosome transport. J Cell Biol 220(2):e202005219

    Article  CAS  Google Scholar 

  23. Migazzi A, Scaramuzzino C, Anderson EN et al (2021) Huntingtin-mediated axonal transport requires arginine methylation by PRMT6. Cell Rep 35(2):108980

    Article  CAS  Google Scholar 

  24. Chaudhary AR, Lu H, Krementsova EB, Bookwalter CS, Trybus KM, Hendricks AG (2019) MAP7 regulates organelle transport by recruiting kinesin-1 to microtubules. J Biol Chem 294(26):10160–10171

    Article  CAS  Google Scholar 

  25. Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10(10):682–696

    Article  CAS  Google Scholar 

  26. Akhmanova A, Hammer JA 3rd (2010) Linking molecular motors to membrane cargo. Curr Opin Cell Biol 22(4):479–487

    Article  CAS  Google Scholar 

  27. Fu MM, Holzbaur EL (2014) Integrated regulation of motor-driven organelle transport by scaffolding proteins. Trends Cell Biol 24(10):564–574

    Article  CAS  Google Scholar 

  28. Cason SE, Carman PJ, Van Duyne C, Goldsmith J, Dominguez R, Holzbaur EL (2021) Sequential dynein effectors regulate axonal autophagosome motility in a maturation-dependent pathway. J Cell Biol 220(7):e202010179

    Article  CAS  Google Scholar 

  29. Loubéry S, Wilhelm C, Hurbain I, Neveu S, Louvard D, Coudrier E (2008) Different microtubule motors move early and late endocytic compartments. Traffic 9(4):492–509

    Article  Google Scholar 

  30. Goyette G, Boulais J, Carruthers NJ, Landry CR, Jutras I, Duclos S, Dermine JF, Michnick SW, LaBoissière S, Lajoie G, Barreiro L, Thibault P, Desjardins M (2012) Proteomic characterization of phagosomal membrane microdomains during phagolysosome biogenesis and evolution. Mol Cell Proteomics 11(11):1365–1377

    Article  Google Scholar 

  31. Hyman A, Drechsel D, Kellogg D, Salser S, Sawin K, Steffen P, Wordeman L, Mitchison T (1991) Preparation of modified tubulins. Methods Enzymol 196:478–485

    Article  CAS  Google Scholar 

  32. Rogers KR, Weiss S, Crevel I, Brophy PJ, Geeves M, Cross R (2001) KIF1D is a fast non-processive kinesin that demonstrates novel K-loop-dependent mechanochemistry. EMBO J 20(18):5101–5113

    Article  CAS  Google Scholar 

  33. Garin J, Diez R, Kieffer S, Dermine JF, Duclos S, Gagnon E, Sadoul R, Rondeau C, Desjardins M (2001) The phagosome proteome: insight into phagosome function. J Cell Biol 152(1):165–180

    Article  CAS  Google Scholar 

  34. Desjardins M, Celis JE, van Meer G, Dieplinger H, Jahraus A, Griffiths G, Huber LA (1994) Molecular characterization of phagosomes. J Biol Chem 269(51):32194–32200

    Article  CAS  Google Scholar 

  35. Dixit R, Ross JL (2010) Studying plus-end tracking at single-molecule resolution using TIRF microscopy. Methods Cell Biol 95:543–554

    Article  CAS  Google Scholar 

  36. Chen Y, Deffenbaugh NC, Anderson CT, Hancock WO (2014) Molecular counting by photobleaching in protein complexes with many subunits: best practices and application to the cellulose synthesis complex. Mol Biol Cell 25(22):3630–3642

    Article  Google Scholar 

  37. Ruhnow F, Zwicker D, Diez S (2011) Tracking single particles and elongated filaments with nanometer precision. Biophys J 100(11):2820–2828

    Article  CAS  Google Scholar 

  38. Hendricks AG, Perlson E, Ross JL, Schroeder HW 3rd, Tokito M, Holzbaur EL (2010) Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport. Curr Biol 20(8):697–702

    Article  CAS  Google Scholar 

  39. Nicholas MP, Rao L, Gennerich A (2014) An improved optical tweezers assay for measuring the force generation of single kinesin molecules. Methods Mol Biol 1136:171–246

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam G. Hendricks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Beaudet, D., Hendricks, A.G. (2023). Reconstitution of Organelle Transport Along Microtubules In Vitro. In: Markus, S.M. (eds) Dynein. Methods in Molecular Biology, vol 2623. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2958-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2958-1_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2957-4

  • Online ISBN: 978-1-0716-2958-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics