Skip to main content

Detection of Glycosaminoglycans in Biological Specimens

  • Protocol
  • First Online:
Proteoglycans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2619))

Abstract

Proteoglycans (PGs) are macromolecules formed by a protein backbone to which one or more glycosaminoglycan (GAG) side chains are covalently attached. Most PGs are present in connective tissues, cell surfaces, and intracellular compartments. The major biological function of PGs derives from the GAG component of the molecule, which is involved in cell growth and proliferation, embryogenesis, maintenance of tissue hydration, and interactions of the cells via receptors. PGs are categorized into four groups based on their cellular and subcellular localization, including cell surfaces and extracellular, intracellular, and pericellular locations. GAGs are a crucial component of PGs involved in various physiological and pathological processes. GAGs also serve as biomarkers of metabolic diseases such as mucopolysaccharidoses and mucolipidoses. Detection of specific GAGs in various biological fluids helps manage various genetic metabolic disorders before it causes irreversible damage to the patient (Amendum et al., Diagnostics (Basel) 11(9):1563, 2021). There are several methods for detecting GAGs; this chapter focuses on measuring GAGs using enzyme-linked immunosorbent assay, liquid chromatographic tandem mass spectrometry, and automated high-throughput mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lamari FN, Karamanos NK (2006) Structure of chondroitin sulfate. Adv Pharmacol 53:33–48

    Article  CAS  Google Scholar 

  2. Wang H, Katagiri Y, McCann TE, Unsworth E, Goldsmith P, Yu ZX et al (2008) Chondroitin-4-sulfation negatively regulates axonal guidance and growth. J Cell Sci 121(Pt 18):3083–3091

    Article  CAS  Google Scholar 

  3. Nakano T, Betti M, Pietrasik Z (2010) Extraction, isolation and analysis of chondroitin sulfate glycosaminoglycans. Recent Pat Food Nutr Agric 2(1):61–74

    Article  CAS  Google Scholar 

  4. Trowbridge JM, Gallo RL (2002) Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology 12(9):117R–125R

    Article  CAS  Google Scholar 

  5. Jones CJ, Beni S, Larive CK (2011) Understanding the effect of the counterion on the reverse-phase ion-pair high-performance liquid chromatography (RPIP-HPLC) resolution of heparin-related saccharide anomers. Anal Chem 83(17):6762–6769

    Article  CAS  Google Scholar 

  6. Shriver Z, Capila I, Venkataraman G, Sasisekharan R (2012) Heparin and heparan sulfate: analyzing structure and microheterogeneity. Handb Exp Pharmacol 207:159–176

    Article  CAS  Google Scholar 

  7. Esko JD, Lindahl U (2001) Molecular diversity of heparan sulfate. J Clin Invest 108(2):169–173

    Article  CAS  Google Scholar 

  8. Li JP, Kusche-Gullberg M (2016) Heparan sulfate: biosynthesis, structure, and function. Int Rev Cell Mol Biol 325:215–273

    Article  CAS  Google Scholar 

  9. Thacker BE, Xu D, Lawrence R, Esko JD (2014) Heparan sulfate 3-O-sulfation: a rare modification in search of a function. Matrix Biol 35:60–72

    Article  CAS  Google Scholar 

  10. Jones CJ, Beni S, Limtiaco JF, Langeslay DJ, Larive CK (2011) Heparin characterization: challenges and solutions. Annu Rev Anal Chem (Palo Alto, Calif) 4:439–465

    Article  CAS  Google Scholar 

  11. Wang L, Brown JR, Varki A, Esko JD (2002) Heparin’s anti-inflammatory effects require glucosamine 6-O-sulfation and are mediated by blockade of L- and P-selectins. J Clin Invest 110(1):127–136

    Article  CAS  Google Scholar 

  12. Hagner-Mcwhirter Å, Lindahl U, Li J-p (2000) Biosynthesis of heparin/heparan sulphate: mechanism of epimerization of glucuronyl C-5. Biochem J 347(1):69–75

    Article  CAS  Google Scholar 

  13. Caterson B, Melrose J (2018) Keratan sulfate, a complex glycosaminoglycan with unique functional capability. Glycobiology 28(4):182–206

    Article  CAS  Google Scholar 

  14. Funderburgh JL (2002) Keratan sulfate biosynthesis. IUBMB Life 54(4):187–194

    Article  CAS  Google Scholar 

  15. Gupta RC, Lall R, Srivastava A, Sinha A (2019) Hyaluronic acid: molecular mechanisms and therapeutic trajectory. Front Vet Sci 6:192

    Article  Google Scholar 

  16. Larraneta E, Henry M, Irwin NJ, Trotter J, Perminova AA, Donnelly RF (2018) Synthesis and characterization of hyaluronic acid hydrogels crosslinked using a solvent-free process for potential biomedical applications. Carbohydr Polym 181:1194–1205

    Article  CAS  Google Scholar 

  17. Iozzo RV, Schaefer L (2015) Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 42:11–55

    Article  CAS  Google Scholar 

  18. Tomatsu S, Shimada T, Mason RW, Montano AM, Kelly J, LaMarr WA et al (2014) Establishment of glycosaminoglycan assays for mucopolysaccharidoses. Meta 4(3):655–679

    Google Scholar 

  19. Tomatsu S, Okamura K, Taketani T, Orii KO, Nishioka T, Gutierrez MA et al (2004) Development and testing of new screening method for keratan sulfate in mucopolysaccharidosis IVA. Pediatr Res 55(4):592–597

    Article  CAS  Google Scholar 

  20. Hintze JP, Tomatsu S, Fujii T, Montano AM, Yamaguchi S, Suzuki Y et al (2011) Comparison of liquid chromatography-tandem mass spectrometry and sandwich ELISA for determination of keratan sulfate in plasma and urine. Biomark Insights 6:69–78

    Article  CAS  Google Scholar 

  21. Dung VC, Tomatsu S, Montano AM, Gottesman G, Bober MB, Mackenzie W et al (2013) Mucopolysaccharidosis IVA: correlation between genotype, phenotype and keratan sulfate levels. Mol Genet Metab 110(1–2):129–138

    Article  CAS  Google Scholar 

  22. Perkins KJ, Muller V, Weber B, Hopwood JJ (2001) Prediction of Sanfilippo phenotype severity from immunoquantification of heparan-N-sulfamidase in cultured fibroblasts from mucopolysaccharidosis type IIIA patients. Mol Genet Metab 73(4):306–312

    Article  CAS  Google Scholar 

  23. Ginsberg SD, Galvin JE, Lee VM, Rorke LB, Dickson DW, Wolfe JH et al (1999) Accumulation of intracellular amyloid-beta peptide (a beta 1-40) in mucopolysaccharidosis brains. J Neuropathol Exp Neurol 58(8):815–824

    Article  CAS  Google Scholar 

  24. Tomatsu S, Okamura K, Maeda H, Taketani T, Castrillon SV, Gutierrez MA et al (2005) Keratan sulphate levels in mucopolysaccharidoses and mucolipidoses. J Inherit Metab Dis 28(2):187–202

    Article  CAS  Google Scholar 

  25. Tomatsu S, Gutierrez MA, Ishimaru T, Pena OM, Montano AM, Maeda H et al (2005) Heparan sulfate levels in mucopolysaccharidoses and mucolipidoses. J Inherit Metab Dis 28(5):743–757

    Article  CAS  Google Scholar 

  26. Linhardt R, Gu K, Loganathan D, Carter S (1989) Analysis of glycosaminoglycan-derived oligosaccharides using reversed-phase ion-pairing and ion-exchange chromatography with suppressed conductivity detection. Anal Biochem 181(2):288–296

    Article  CAS  Google Scholar 

  27. McEwen CN, McKay RG, Larsen BS (2005) Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments. Anal Chem 77(23):7826–7831

    Article  CAS  Google Scholar 

  28. Ricochon G, Paris C, Girardin M, Muniglia L (2011) Highly sensitive, quick and simple quantification method for mono and disaccharides in aqueous media using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS). J Chromatogr B Analyt Technol Biomed Life Sci 879(19):1529–1536

    Article  CAS  Google Scholar 

  29. Zhou X, Cheng Z, Ran L, Guo X, Liu Z, Yu P (2011) Determination of glucosamine in human plasma by high-performance liquid chromatography-atmospheric pressure chemical ionization source-tandem mass spectrometry. Chromatograp Res Int 2011:1

    Article  Google Scholar 

  30. Bielik AM, Zaia J (2010) Historical overview of glycoanalysis. Methods Mol Biol 600:9–30

    Article  CAS  Google Scholar 

  31. Zaia J (2005) Principles of mass spectrometry of glycosaminoglycans. J Biomacromol Mass Spectrom 1(1):3–36

    Google Scholar 

  32. Oguma T, Tomatsu S, Montano AM, Okazaki O (2007) Analytical method for the determination of disaccharides derived from keratan, heparan, and dermatan sulfates in human serum and plasma by high-performance liquid chromatography/turbo ionspray ionization tandem mass spectrometry. Anal Biochem 368(1):79–86

    Article  CAS  Google Scholar 

  33. Oguma T, Tomatsu S, Okazaki O (2007) Analytical method for determination of disaccharides derived from keratan sulfates in human serum and plasma by high-performance liquid chromatography/turbo-ionspray ionization tandem mass spectrometry. Biomed Chromatograp 21(4):356–362

    Article  CAS  Google Scholar 

  34. Oguma T, Toyoda H, Toida T, Imanari T (2001) Analytical method of heparan sulfates using high-performance liquid chromatography turbo-ionspray ionization tandem mass spectrometry. J Chromatogr B Biomed Sci Appl 754(1):153–159

    Article  CAS  Google Scholar 

  35. Oguma T, Toyoda H, Toida T, Imanari T (2001) Analytical method for keratan sulfates by high-performance liquid chromatography/turbo-ionspray tandem mass spectrometry. Anal Biochem 290(1):68–73

    Article  CAS  Google Scholar 

  36. Oguma T, Toyoda H, Toida T, Imanari T (2001) Analytical method of chondroitin/dermatan sulfates using high performance liquid chromatography/turbo ionspray ionization mass spectrometry: application to analyses of the tumor tissue sections on glass slides. Biomed Chromatograp 15(5):356–362

    Article  CAS  Google Scholar 

  37. Gordon BA, Haust MD (1970) The mucopolysaccharidoses types I, II, and 3: urinary findings in 23 cases. Clin Biochem 3(3):203–215

    CAS  Google Scholar 

  38. Pennock CA, Charles RG, Stansbie D (1975) Glycosaminoglycan fractions in normal human urine. Ann Clin Biochem 12(5):207–211

    Article  CAS  Google Scholar 

  39. Taniguchi N (1972) Age differences in the pattern of urinary glycosaminoglycan excretion in normal individuals. Clin Chimica Acta Int J Clin Chem 37:225–233

    Article  CAS  Google Scholar 

  40. Murphy D, Pennock CA, London KJ (1974) Gas-liquid chromatographic measurement of glucosamine and galactosamine content of urinary glycosaminoglycans. Clin Chimica Acta Int J Clin Chem 53(2):145–152

    Article  CAS  Google Scholar 

  41. Toida T, Qiu G, Matsunaga T, Sagehashi Y, Imanari T (1992) Gas chromatography-mass spectrometric determinations of iduronic and glucuronic acids in glycosaminoglycans after reduction of carboxylic group using sodium borodeuteride. Anal Sci 8(6):799–804

    Article  CAS  Google Scholar 

  42. Hopwood JJ, Harrison JR (1982) High-resolution electrophoresis of urinary glycosaminoglycans: an improved screening test for the mucopolysaccharidoses. Anal Biochem 119(1):120–127

    Article  CAS  Google Scholar 

  43. Cappelletti R, Del Rosso M, Chiarugi VP (1979) A new electrophoretic method for the complete separation of all known animal glycosaminoglycans in a monodimensional run. Anal Biochem 99(2):311–315

    Article  CAS  Google Scholar 

  44. Duteil S, Gareil P, Girault S, Mallet A, Feve C, Siret L (1999) Identification of heparin oligosaccharides by direct coupling of capillary electrophoresis/Ionspray-mass spectrometry. Rapid Commun Mass Spectrom 13(19):1889–1898

    Article  CAS  Google Scholar 

  45. Lamoree M, Reinhoud N, Tjaden U, Niessen W, Van der Greef J (1994) On-capillary isotachophoresis for loadability enhancement in capillary zone electrophoresis/mass spectrometry of β-agonists. Biol Mass Spectrom 23(6):339–345

    Article  CAS  Google Scholar 

  46. Rashed MS, Ozand PT, Bucknall MP, Little D (1995) Diagnosis of inborn errors of metabolism from blood spots by acylcarnitines and amino acids profiling using automated electrospray tandem mass spectrometry. Pediatr Res 38(3):324–331

    Article  CAS  Google Scholar 

  47. Shimada T, Kelly J, LaMarr WA, van Vlies N, Yasuda E, Mason RW et al (2014) Novel heparan sulfate assay by using automated high-throughput mass spectrometry: application to monitoring and screening for mucopolysaccharidoses. Mol Genet Metab 113(1–2):92–99

    Article  CAS  Google Scholar 

  48. Fedele AO (2015) Sanfilippo syndrome: causes, consequences, and treatments. Appl Clin Genet 8:269–281

    Article  CAS  Google Scholar 

  49. Van Weemen BK, Schuurs AH (1971) Immunoassay using antigen-enzyme conjugates. FEBS Lett 15(3):232–236

    Article  Google Scholar 

  50. Caterson B, Christner JE, Baker JR (1983) Identification of a monoclonal antibody that specifically recognizes corneal and skeletal keratan sulfate. Monoclonal antibodies to cartilage proteoglycan. J Biol Chem 258(14):8848–8854

    Article  CAS  Google Scholar 

  51. Moller HJ, Larsen FS, Ingemann-Hansen T, Poulsen JH (1994) ELISA for the core protein of the cartilage large aggregating proteoglycan, aggrecan: comparison with the concentrations of immunogenic keratan sulphate in synovial fluid, serum and urine. Clin Chimica Acta Int J Clin Chem 225(1):43–55

    Article  CAS  Google Scholar 

  52. Kato K, Hamaguchi Y, Okawa S, Ishikawa E, Kobayashi K (1977) Use of rabbit antiboty IgG bound onto plain and aminoalkylsilyl glass surface for the enzyme-linked sandwich immunoassay. J Biochem 82(1):261–266

    Article  CAS  Google Scholar 

  53. Mochizuki H, Yoshida K, Shibata Y, Kimata K (2008) Tetrasulfated disaccharide unit in heparan sulfate: enzymatic formation and tissue distribution. J Biol Chem 283(45):31237–31245

    Article  CAS  Google Scholar 

  54. Khan SA, Mason RW, Giugliani R, Orii K, Fukao T, Suzuki Y et al (2018) Glycosaminoglycans analysis in blood and urine of patients with mucopolysaccharidosis. Mol Genet Metab 125(1–2):44–52

    Article  CAS  Google Scholar 

  55. Khan SA, Mason RW, Kobayashi H, Yamaguchi S, Tomatsu S (2020) Advances in glycosaminoglycan detection. Mol Genet Metab 130(2):101–109

    Article  CAS  Google Scholar 

  56. Kubaski F, Mason RW, Nakatomi A, Shintaku H, Xie L, van Vlies NN et al (2017) Newborn screening for mucopolysaccharidoses: a pilot study of measurement of glycosaminoglycans by tandem mass spectrometry. J Inherit Metab Dis 40(1):151–158

    Article  CAS  Google Scholar 

  57. Kubaski F, Suzuki Y, Orii K, Giugliani R, Church HJ, Mason RW et al (2017) Glycosaminoglycan levels in dried blood spots of patients with mucopolysaccharidoses and mucolipidoses. Mol Genet Metab 120(3):247–254

    Article  CAS  Google Scholar 

  58. Thomson J (ed) (1897) On the Chatode Raus. Proc Camb Philos Soc

    Google Scholar 

  59. Osago H, Shibata T, Hara N, Kuwata S, Kono M, Uchio Y et al (2014) Quantitative analysis of glycosaminoglycans, chondroitin/dermatan sulfate, hyaluronic acid, heparan sulfate, and keratan sulfate by liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal Biochem 467:62–74

    Article  CAS  Google Scholar 

  60. Arunkumar N, Vu DC, Khan S, Kobayashi H, Ngoc Can TB, Oguni T et al (2021) Diagnosis of mucopolysaccharidoses and mucolipidosis by assaying multiplex enzymes and glycosaminoglycans. Diagnostics (Basel). 11(8):1347

    Article  CAS  Google Scholar 

  61. Amendum PC, Khan S, Yamaguchi S, Kobayashi H, Ago Y, Suzuki Y et al (2021) Glycosaminoglycans as biomarkers for mucopolysaccharidoses and other disorders. Diagnostics (Basel). 11(9):1563

    Article  CAS  Google Scholar 

  62. Shimada T, Tomatsu S, Mason RW, Yasuda E, Mackenzie WG, Hossain J et al (2015) Di-sulfated Keratan sulfate as a novel biomarker for Mucopolysaccharidosis II, IVA, and IVB. JIMD Rep 21:1–13

    Google Scholar 

  63. Tomatsu S, Kubaski F, Sawamoto K, Mason RW, Yasuda E, Shimada T et al (2014) Newborn screening and diagnosis of mucopolysaccharidoses: application of tandem mass spectrometry. Nihon Masu Sukuriningu Gakkai Shi 24:19–37

    Google Scholar 

  64. Lawrence R, Brown JR, Al-Mafraji K, Lamanna WC, Beitel JR, Boons GJ et al (2012) Disease-specific non-reducing end carbohydrate biomarkers for mucopolysaccharidoses. Nat Chem Biol 8(2):197–204

    Article  CAS  Google Scholar 

  65. Lawrence R, Olson SK, Steele RE, Wang L, Warrior R, Cummings RD et al (2008) Evolutionary differences in glycosaminoglycan fine structure detected by quantitative glycan reductive isotope labeling. J Biol Chem 283(48):33674–33684

    Article  CAS  Google Scholar 

  66. Auray-Blais C, Bherer P, Gagnon R, Young SP, Zhang HH, An Y et al (2011) Efficient analysis of urinary glycosaminoglycans by LC-MS/MS in mucopolysaccharidoses type I, II and VI. Mol Genet Metab 102(1):49–56

    Article  CAS  Google Scholar 

  67. Auray-Blais C, Lavoie P, Tomatsu S, Valayannopoulos V, Mitchell JJ, Raiman J et al (2016) UPLC-MS/MS detection of disaccharides derived from glycosaminoglycans as biomarkers of mucopolysaccharidoses. Anal Chim Acta 936:139–148

    Article  CAS  Google Scholar 

  68. Auray-Blais C, Lavoie P, Zhang H, Gagnon R, Clarke JT, Maranda B et al (2012) An improved method for glycosaminoglycan analysis by LC-MS/MS of urine samples collected on filter paper. Clin Chimica Acta Int J Clin Chem 413(7–8):771–778

    Article  CAS  Google Scholar 

  69. Zhang H, Young SP, Millington DS (2013) Quantification of glycosaminoglycans in urine by isotope-dilution liquid chromatography-electrospray ionization tandem mass spectrometry. Curr Protoc Hum Genet. 76(1):Unit 17.12

    Google Scholar 

  70. Zhang H, Young SP, Auray-Blais C, Orchard PJ, Tolar J, Millington DS (2011) Analysis of glycosaminoglycans in cerebrospinal fluid from patients with mucopolysaccharidoses by isotope-dilution ultra-performance liquid chromatography-tandem mass spectrometry. Clin Chem 57(7):1005–1012

    Article  CAS  Google Scholar 

  71. Tanaka N, Kida S, Kinoshita M, Morimoto H, Shibasaki T, Tachibana K et al (2018) Evaluation of cerebrospinal fluid heparan sulfate as a biomarker of neuropathology in a murine model of mucopolysaccharidosis type II using high-sensitivity LC/MS/MS. Mol Genet Metab 125(1–2):53–58

    Article  CAS  Google Scholar 

  72. Trim PJ, Lau AA, Hopwood JJ, Snel MF (2014) A simple method for early age phenotype confirmation using toe tissue from a mouse model of MPS IIIA. Rapid Commun Mass Spectrom 28(8):933–938

    Article  CAS  Google Scholar 

  73. Trim PJ, Hopwood JJ, Snel MF (2015) Butanolysis derivatization: improved sensitivity in LC-MS/MS quantitation of heparan sulfate in urine from mucopolysaccharidosis patients. Anal Chem 87(18):9243–9250

    Article  CAS  Google Scholar 

  74. Forni G, Malvagia S, Funghini S, Scolamiero E, Mura M, Della Bona M et al (2019) LC-MS/MS method for simultaneous quantification of heparan sulfate and dermatan sulfate in urine by butanolysis derivatization. Clin Chimica Acta Int J Clin Chem 488:98–103

    Article  CAS  Google Scholar 

  75. Tomatsu S, Shimada T, Mason RW, Kelly J, LaMarr WA, Yasuda E et al (2014) Assay for Glycosaminoglycans by tandem mass spectrometry and its applications. J Anal Bioanal Tech 2014(Suppl 2):006

    Google Scholar 

  76. Bretschneider T, Ozbal C, Holstein M, Winter M, Buettner FH, Thamm S et al (2019) RapidFire BLAZE-mode is boosting ESI-MS toward high-throughput-screening. SLAS Technol 24(4):386–393

    Article  Google Scholar 

  77. Izquierdo M, Lin D, O’Neill S, Zoltner M, Webster L, Hope A et al (2020) Development of a high-throughput screening assay to identify inhibitors of the major M17-Leucyl aminopeptidase from Trypanosoma cruzi using RapidFire mass spectrometry. SLAS Discov. 25(9):1064–1071

    Article  CAS  Google Scholar 

  78. Pearson LA, Green CJ, Lin D, Petit AP, Gray DW, Cowling VH et al (2021) Development of a high-throughput screening assay to identify inhibitors of the SARS-CoV-2 guanine-N7-methyltransferase using RapidFire mass spectrometry. SLAS Discov 26(6):749–756

    Article  CAS  Google Scholar 

  79. Shibutani T, Nishino W, Shiraki M, Iwayama Y (1993) ELISA detection of glycosaminoglycan (GAG)-linked proteoglycans in gingival crevicular fluid. J Periodontal Res 28(1):17–20

    Article  CAS  Google Scholar 

  80. Langford-Smith KJ, Mercer J, Petty J, Tylee K, Church H, Roberts J et al (2011) Heparin cofactor II-thrombin complex and dermatan sulphate:chondroitin sulphate ratio are biomarkers of short- and long-term treatment effects in mucopolysaccharide diseases. J Inherit Metab Dis 34(2):499–508

    Article  CAS  Google Scholar 

  81. Yu Y, Zhang F, Colon W, Linhardt RJ, Xia K (2019) Glycosaminoglycans in human cerebrospinal fluid determined by LC-MS/MS MRM. Anal Biochem 567:82–84

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Centers of Biomedical Research Excellence (COBRE). This work was also supported by grants from Austrian MPS society, A Cure for Robert, Inc., the Carol Ann Foundation, Angelo R. Cali & Mary V. Cali Family Foundation, Inc., the Vain and Harry Fish Foundation, Inc., the Bennett Foundation, Jacob Randall Foundation, and Nemours Fund. S.T. was supported by an Institutional Development Award from the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health (NICHD) (1R01HD102545-01A1, 1R01HD104814-01A1). The content of the article has not been influenced by the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunji Tomatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Khan, S.A., Nidhi, F.N.U., Amendum, P.C., Tomatsu, S. (2023). Detection of Glycosaminoglycans in Biological Specimens. In: Karamanos, N.K. (eds) Proteoglycans. Methods in Molecular Biology, vol 2619. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2946-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2946-8_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2945-1

  • Online ISBN: 978-1-0716-2946-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics