Skip to main content

Rodent Stroke Models to Study Functional Recovery and Neural Repair

  • Protocol
  • First Online:
Neural Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2616))

Abstract

Rodent ischemic stroke models are essential research tools for studying this highly prevalent disease and represent a critical element in the translational pipeline for development of new therapies. The majority of ischemic stroke models have been developed to study the acute phase of the disease and neuroprotective strategies, but a subset of models is better suited for studying stroke recovery. Each model therefore has characteristics that lend itself to certain types of investigations and outcome measures, and it is important to consider both explicit and implicit details when designing experiments that utilize each model. The following chapter briefly summarizes the known aspects of the main rodent stroke models with emphasis on their clinical relevance and suitability for studying recovery and neural repair following stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al Shoyaib A, Alamri FF, Biggers A et al (2021) Delayed exercise-induced upregulation of Angiogenic proteins and recovery of motor function after photothrombotic stroke in mice. Neuroscience 461:57–71

    Article  Google Scholar 

  2. Al Shoyaib A, Alamri FF, Syeara N et al (2021) The effect of histone deacetylase inhibitors panobinostat or entinostat on motor recovery in mice after ischemic stroke. NeuroMolecular Med 23:471–484

    Article  Google Scholar 

  3. Alamri FF, Al Shoyaib A, Syeara N et al (2021) Delayed atomoxetine or fluoxetine treatment coupled with limited voluntary running promotes motor recovery in mice after ischemic stroke. Neural Regen Res 16:1244–1251

    Article  CAS  Google Scholar 

  4. Alamri FF, Karamyan ST, Karamyan VT (2023) A low budget, photothrombotic rodent stroke model. In: Karamyan VT, Stowe AM (eds) Neural repair. Springer Nature

    Google Scholar 

  5. Bell JA, Wolke ML, Ortez RC et al (2015) Training intensity affects motor rehabilitation efficacy following unilateral ischemic insult of the sensorimotor cortex in C57BL/6 mice. Neurorehabil Neural Repair 29:590–598

    Article  Google Scholar 

  6. Blanco-Suárez E (2023) Photothrombotic model to create an infarct in the hippocampus. In: Karamyan VT, Stowe AM (eds) Neural repair. Springer Nature

    Google Scholar 

  7. Bronnum-Hansen H, Davidsen M, Thorvaldsen P et al (2001) Long-term survival and causes of death after stroke. Stroke 32:2131–2136

    Article  CAS  Google Scholar 

  8. Clarkson AN, Huang BS, Macisaac SE et al (2010) Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 468:305–309

    Article  CAS  Google Scholar 

  9. Clarkson AN, Lopez-Valdes HE, Overman JJ et al (2013) Multimodal examination of structural and functional remapping in the mouse photothrombotic stroke model. J Cereb Blood Flow Metab 33:716–723

    Article  Google Scholar 

  10. Cook DJ, Nguyen C, Chun HN et al (2017) Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke. J Cereb Blood Flow Metab 37:1030–1045

    Article  CAS  Google Scholar 

  11. Corbett D, Carmichael ST, Murphy TH et al (2017) Enhancing the alignment of the preclinical and clinical stroke recovery research pipeline: consensus-based core recommendations from the stroke recovery and rehabilitation roundtable translational working group. Int J Stroke 12:462–471

    Article  Google Scholar 

  12. Dingman AL, Rodgers KM, Dietz RM et al (2019) Oligodendrocyte progenitor cell proliferation and fate after white matter stroke in juvenile and adult mice. Dev Neurosci 40:1–16

    Google Scholar 

  13. Doyle KP, Fathali N, Siddiqui MR et al (2012) Distal hypoxic stroke: a new mouse model of stroke with high throughput, low variability and a quantifiable functional deficit. J Neurosci Methods 207:31–40

    Article  Google Scholar 

  14. Eldahshan W, Sayed MA, Awad ME et al (2021) Stimulation of angiotensin II receptor 2 preserves cognitive function and is associated with an enhanced cerebral vascular density after stroke. Vasc Pharmacol 141:106904

    Article  CAS  Google Scholar 

  15. Gerriets T, Li F, Silva MD et al (2003) The macrosphere model: evaluation of a new stroke model for permanent middle cerebral artery occlusion in rats. J Neurosci Methods 122:201–211

    Article  Google Scholar 

  16. Gilmour G, Iversen SD, O’neill MF et al (2004) The effects of intracortical endothelin-1 injections on skilled forelimb use: implications for modelling recovery of function after stroke. Behav Brain Res 150:171–183

    Article  CAS  Google Scholar 

  17. Horie N, Maag AL, Hamilton SA et al (2008) Mouse model of focal cerebral ischemia using endothelin-1. J Neurosci Methods 173:286–290

    Article  CAS  Google Scholar 

  18. Jia J-M, Jin Y (2023) Modeling distal middle cerebral artery occlusion in neonatal rodents with magnetic nanoparticles or magnetized red blood cells. In: Karamyan VT, Stowe AM (eds) Neural repair. Springer Nature

    Google Scholar 

  19. Kaiser EE, West FD (2020) Large animal ischemic stroke models: replicating human stroke pathophysiology. Neural Regen Res 15:1377–1387

    Article  CAS  Google Scholar 

  20. Karamyan VT (2023) Clinically applicable experimental design and considerations for stroke recovery preclinical studies. In: Karamyan VT, Stowe AM (eds) Neural repair. Springer Nature

    Chapter  Google Scholar 

  21. Kerr AL, Wolke ML, Bell JA et al (2013) Post-stroke protection from maladaptive effects of learning with the non-paretic forelimb by bimanual home cage experience in C57BL/6 mice. Behav Brain Res 252:180–187

    Article  Google Scholar 

  22. Kim SY, Hsu JE, Husbands LC et al (2018) Coordinated plasticity of synapses and astrocytes underlies practice-driven functional vicariation in Peri-infarct motor cortex. J Neurosci 38:93–107

    Article  CAS  Google Scholar 

  23. Lee B, Clarke D, Al Ahmad A et al (2011) Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents. J Clin Invest 121:3005–3023

    Article  CAS  Google Scholar 

  24. Li S, Nie EH, Yin Y et al (2015) GDF10 is a signal for axonal sprouting and functional recovery after stroke. Nat Neurosci 18:1737–1745

    Article  CAS  Google Scholar 

  25. Liu F, Schafer DP, Mccullough LD (2009) TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J Neurosci Methods 179:1–8

    Article  CAS  Google Scholar 

  26. Liu Z, Li Y, Cui Y et al (2014) Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia 62:2022–2033

    Article  Google Scholar 

  27. Lourbopoulos A, Mourouzis I, Xinaris C et al (2021) Translational block in stroke: a constructive and out-of-the-box reappraisal. Front Neurosci 15:652403

    Article  Google Scholar 

  28. Macrae IM (2011) Preclinical stroke research–advantages and disadvantages of the most common rodent models of focal ischaemia. Br J Pharmacol 164:1062–1078

    Article  CAS  Google Scholar 

  29. Marin MA, Carmichael ST (2018) Stroke in CNS white matter: models and mechanisms. Neurosci Lett 684:193–199

    Article  CAS  Google Scholar 

  30. Marin MA, Gleichman AJ, Brumm AJ et al (2023) Subcortical white matter stroke in the mouse: inducing injury and tracking cellular proliferation. In: Karamyan VT, Stowe AM (eds) Neural repair. Springer Nature

    Google Scholar 

  31. Mayzel-Oreg O, Omae T, Kazemi M et al (2004) Microsphere-induced embolic stroke: an MRI study. Magn Reson Med 51:1232–1238

    Article  Google Scholar 

  32. Minnerup J, Kim JB, Schmidt A et al (2011) Effects of neural progenitor cells on sensorimotor recovery and endogenous repair mechanisms after photothrombotic stroke. Stroke 42:1757–1763

    Article  Google Scholar 

  33. Modo M, Stroemer RP, Tang E et al (2000) Neurological sequelae and long-term behavioural assessment of rats with transient middle cerebral artery occlusion. J Neurosci Methods 104:99–109

    Article  CAS  Google Scholar 

  34. Montgomery KM, Hook M, Sohrabji F (2023) Assessing depression and cognitive impairment following stroke and neurotrauma. In: Karamyan VT, Stowe AM (eds) Neural repair. Springer Nature

    Google Scholar 

  35. Ohab JJ, Fleming S, Blesch A et al (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26:13007–13016

    Article  CAS  Google Scholar 

  36. Orset C, Macrez R, Young AR et al (2007) Mouse model of in situ thromboembolic stroke and reperfusion. Stroke 38:2771–2778

    Article  Google Scholar 

  37. Ortega SB, Torres VO, Latchney SE et al (2020) B cells migrate into remote brain areas and support neurogenesis and functional recovery after focal stroke in mice. Proc Natl Acad Sci U S A 117:4983–4993

    Article  CAS  Google Scholar 

  38. Overman JJ, Clarkson AN, Wanner IB et al (2012) A role for ephrin-A5 in axonal sprouting, recovery, and activity-dependent plasticity after stroke. Proc Natl Acad Sci U S A 109:E2230–E2239

    Article  CAS  Google Scholar 

  39. Romain G, Mariet AS, Jooste V et al (2020) Long-term relative survival after stroke: the dijon stroke registry. Neuroepidemiology 54:498–505

    Article  Google Scholar 

  40. Roome RB, Bartlett RF, Jeffers M et al (2014) A reproducible Endothelin-1 model of forelimb motor cortex stroke in the mouse. J Neurosci Methods 233:34–44

    Article  CAS  Google Scholar 

  41. Rosenzweig S, Carmichael ST (2013) Age-dependent exacerbation of white matter stroke outcomes: a role for oxidative damage and inflammatory mediators. Stroke 44:2579–2586

    Article  CAS  Google Scholar 

  42. Sadler R, Cramer JV, Heindl S et al (2020) Short-chain fatty acids improve poststroke recovery via immunological mechanisms. J Neurosci 40:1162–1173

    Article  CAS  Google Scholar 

  43. Schinelli S (2006) Pharmacology and physiopathology of the brain endothelin system: an overview. Curr Med Chem 13:627–638

    Article  CAS  Google Scholar 

  44. Soleman S, Yip P, Leasure JL et al (2010) Sustained sensorimotor impairments after endothelin-1 induced focal cerebral ischemia (stroke) in aged rats. Exp Neurol 222:13–24

    Article  CAS  Google Scholar 

  45. Sommer CJ (2017) Ischemic stroke: experimental models and reality. Acta Neuropathol 133:245–261

    Article  Google Scholar 

  46. Stroemer P, Patel S, Hope A et al (2009) The neural stem cell line CTX0E03 promotes behavioral recovery and endogenous neurogenesis after experimental stroke in a dose-dependent fashion. Neurorehabil Neural Repair 23:895–909

    Article  Google Scholar 

  47. Syeara N, Alamri FF, Jayaraman S et al (2020) Motor deficit in the mouse ferric chloride-induced distal middle cerebral artery occlusion model of stroke. Behav Brain Res 380:112418

    Article  CAS  Google Scholar 

  48. Talley Watts L, Zheng W, Garling RJ et al (2015) Rose Bengal Photothrombosis by confocal optical imaging in vivo: a model of single vessel stroke. J Vis Exp 100:e52794

    Google Scholar 

  49. Tennant KA, Jones TA (2009) Sensorimotor behavioral effects of endothelin-1 induced small cortical infarcts in C57BL/6 mice. J Neurosci Methods 181:18–26

    Article  CAS  Google Scholar 

  50. Tennant KA, Kerr AL, Adkins DL et al (2015) Age-dependent reorganization of peri-infarct premotor cortex with task-specific rehabilitative training in mice. Neurorehabil Neural Repair 29:193–202

    Article  Google Scholar 

  51. Uzdensky AB (2018) Photothrombotic stroke as a model of ischemic stroke. Transl Stroke Res 9:437–451

    Article  Google Scholar 

  52. Van Slooten AR, Sun Y, Clarkson AN et al (2015) L-NIO as a novel mechanism for inducing focal cerebral ischemia in the adult rat brain. J Neurosci Methods 245:44–57

    Article  Google Scholar 

  53. Wilmes FJ, Garcia JH, Conger KA et al (1983) Mechanisms of blood-brain barrier breakdown after microembolization of the cat’s brain. J Neuropathol Exp Neurol 42:421–438

    Article  CAS  Google Scholar 

  54. Yu CL, Zhou H, Chai AP et al (2015) Whole-scale neurobehavioral assessments of photothrombotic ischemia in freely moving mice. J Neurosci Methods 239:100–107

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vardan T. Karamyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Britsch, D.R.S., Syeara, N., Stowe, A.M., Karamyan, V.T. (2023). Rodent Stroke Models to Study Functional Recovery and Neural Repair. In: Karamyan, V.T., Stowe, A.M. (eds) Neural Repair. Methods in Molecular Biology, vol 2616. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2926-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2926-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2925-3

  • Online ISBN: 978-1-0716-2926-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics