Skip to main content

Vector Tropism

  • Protocol
  • First Online:
Vectorology for Optogenetics and Chemogenetics

Part of the book series: Neuromethods ((NM,volume 195))

Abstract

Recombinant viruses expand the neurobiology toolbox and offer researchers an assortment of gene delivery options. Each type of virus varies in its capabilities and limitations, and therefore, there are important considerations in choosing the best viral vector system for each application. The suitability of a viral vector for gene delivery is dictated by factors such as genomic cargo capacity, duration and regulation of its transgene expression, immunogenicity, toxicity, and viral tropism. A myriad of permissive host factors is necessary to successfully express the viral genome and deliver transgenes. Viral tropism depends on the interaction of host and virion surface proteins for attachment and a concerted virus and host gene expression and assembly system. In this chapter, we hope to provide readers with a practical guide for selecting vectors for gene delivery in neuroscience applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Keiser MS, Chen YH, Davidson BL (2018) Techniques for intracranial stereotaxic injections of adeno-associated viral vectors in adult mice. Curr Protoc Mouse Biol 8(4):e57

    Article  Google Scholar 

  2. Bastrikova N et al (2008) Synapse elimination accompanies functional plasticity in hippocampal neurons. Proc Natl Acad Sci U S A 105(8):3123–3127

    Article  CAS  Google Scholar 

  3. Nalbantoglu J et al (2001) Muscle-specific overexpression of the adenovirus primary receptor CAR overcomes low efficiency of gene transfer to mature skeletal muscle. J Virol 75(9):4276–4282

    Article  CAS  Google Scholar 

  4. Hurez V et al (2002) Efficient adenovirus-mediated gene transfer into primary T cells and thymocytes in a new coxsackie/adenovirus receptor transgenic model. BMC Immunol 3:4

    Article  Google Scholar 

  5. Bett AJ, Prevec L, Graham FL (1993) Packaging capacity and stability of human adenovirus type 5 vectors. J Virol 67(10):5911–5921

    Article  CAS  Google Scholar 

  6. O’Carroll SJ, Cook WH, Young D (2020) AAV targeting of glial cell types in the central and peripheral nervous system and relevance to human gene therapy. Front Mol Neurosci 13:618020

    Article  Google Scholar 

  7. Berns KI, Giraud C (1996) Biology of adeno-associated virus. Curr Top Microbiol Immunol 218:1–23

    CAS  Google Scholar 

  8. Rabinowitz JE, Samulski J (1998) Adeno-associated virus expression systems for gene transfer. Curr Opin Biotechnol 9(5):470–475

    Article  CAS  Google Scholar 

  9. Xiang H et al (2018) Glial fibrillary acidic protein promoter determines transgene expression in satellite glial cells following intraganglionic adeno-associated virus delivery in adult rats. J Neurosci Res 96(3):436–448

    Article  CAS  Google Scholar 

  10. Ridoux V et al (1994) Adenoviral vectors as functional retrograde neuronal tracers. Brain Res 648(1):171–175

    Article  CAS  Google Scholar 

  11. Ricobaraza A et al (2020) High-capacity adenoviral vectors: expanding the scope of gene therapy. Int J Mol Sci 21(10):3643

    Article  CAS  Google Scholar 

  12. Palmer DJ, Ng P (2008) Methods for the production of first generation adenoviral vectors. Methods Mol Biol 433:55–78

    Article  CAS  Google Scholar 

  13. Montesinos MS, Satterfield R, Young SM Jr (2016) Helper-dependent adenoviral vectors and their use for neuroscience applications. Methods Mol Biol 1474:73–90

    Article  CAS  Google Scholar 

  14. Fausther-Bovendo H, Kobinger GP (2014) Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what’s important? Hum Vaccin Immunother 10(10):2875–2884

    Article  Google Scholar 

  15. Martel AC et al (2020) Targeted transgene expression in cholinergic interneurons in the monkey striatum using canine adenovirus serotype 2 vectors. Front Mol Neurosci 13:76

    Article  CAS  Google Scholar 

  16. Del Rio D et al (2019) CAV-2 vector development and gene transfer in the central and peripheral nervous systems. Front Mol Neurosci 12:71

    Article  Google Scholar 

  17. Soudais C et al (2001) Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo. FASEB J 15(12):2283–2285

    Article  CAS  Google Scholar 

  18. Senn V et al (2014) Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81(2):428–437

    Article  CAS  Google Scholar 

  19. Li SJ et al (2018) A viral receptor complementation strategy to overcome CAV-2 tropism for efficient retrograde targeting of neurons. Neuron 98(5):905–917 e5

    Article  CAS  Google Scholar 

  20. Soudais C, Skander N, Kremer EJ (2004) Long-term in vivo transduction of neurons throughout the rat CNS using novel helper-dependent CAV-2 vectors. FASEB J 18(2):391–393

    Article  CAS  Google Scholar 

  21. Simao D et al (2016) Evaluation of helper-dependent canine adenovirus vectors in a 3D human CNS model. Gene Ther 23(1):86–94

    Article  CAS  Google Scholar 

  22. Smith BF et al (2006) Administration of a conditionally replicative oncolytic canine adenovirus in normal dogs. Cancer Biother Radiopharm 21(6):601–606

    CAS  Google Scholar 

  23. Roizman B, Knipe DM, Whitley RJ (2007) Herpes simplex viruses. In: Knipe DM et al (eds) Fields virology. Lippincott Williams & Wilkins, New York, pp 2501–2601

    Google Scholar 

  24. Bello-Morales R et al (2014) The effect of cellular differentiation on HSV-1 infection of oligodendrocytic cells. PLoS One 9(2):e89141

    Article  Google Scholar 

  25. Zheng W et al (2020) Patterns of herpes simplex virus 1 infection in neural progenitor cells. J Virol 94(16):e00994–e00920

    Article  Google Scholar 

  26. Zemanick MC, Strick PL, Dix RD (1991) Direction of transneuronal transport of herpes simplex virus 1 in the primate motor system is strain-dependent. Proc Natl Acad Sci U S A 88(18):8048–8051

    Article  CAS  Google Scholar 

  27. Neve RL (2012) Overview of gene delivery into cells using HSV-1-based vectors. Curr Protoc Neurosci Chapter 4:Unit 4.12

    Google Scholar 

  28. Jacobs A, Breakefield XO, Fraefel C (1999) HSV-1-based vectors for gene therapy of neurological diseases and brain tumors: part II. Vector systems and applications. Neoplasia 1(5):402–416

    Article  CAS  Google Scholar 

  29. Manservigi R, Argnani R, Marconi P (2010) HSV recombinant vectors for gene therapy. Open Virol J 4:123–156

    CAS  Google Scholar 

  30. Neve RL, Lim F (2013) Generation of high-titer defective HSV-1 vectors. Curr Protoc Neurosci Chapter 4:Unit 4.13

    Google Scholar 

  31. Laimbacher AS, Fraefel C (2012) Gene delivery using helper virus-free HSV-1 amplicon vectors. Curr Protoc Neurosci Chapter 4:Unit 4.14

    Google Scholar 

  32. Pomeranz LE, Reynolds AE, Hengartner CJ (2005) Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69(3):462–500

    Article  CAS  Google Scholar 

  33. Ekstrand MI, Enquist LW, Pomeranz LE (2008) The alpha-herpesviruses: molecular pathfinders in nervous system circuits. Trends Mol Med 14(3):134–140

    Article  CAS  Google Scholar 

  34. Enquist LW et al (1998) Infection and spread of alphaherpesviruses in the nervous system. Adv Virus Res 51:237–347

    Article  CAS  Google Scholar 

  35. Demmin GL et al (2001) Insertions in the gG gene of pseudorabies virus reduce expression of the upstream Us3 protein and inhibit cell-to-cell spread of virus infection. J Virol 75(22):10856–10869

    Article  CAS  Google Scholar 

  36. del Rio T et al (2005) Heterogeneity of a fluorescent tegument component in single pseudorabies virus virions and enveloped axonal assemblies. J Virol 79(7):3903–3919

    Article  Google Scholar 

  37. Card JP et al (2011) A dual infection pseudorabies virus conditional reporter approach to identify projections to collateralized neurons in complex neural circuits. PLoS One 6(6):e21141

    Article  CAS  Google Scholar 

  38. Card JP, Enquist LW (2014) Transneuronal circuit analysis with pseudorabies viruses. Curr Protoc Neurosci 68:1.5.1–1.539

    Article  Google Scholar 

  39. McCarthy KM, Tank DW, Enquist LW (2009) Pseudorabies virus infection alters neuronal activity and connectivity in vitro. PLoS Pathog 5(10):e1000640

    Article  Google Scholar 

  40. Asokan A, Schaffer DV, Samulski RJ (2012) The AAV vector toolkit: poised at the clinical crossroads. Mol Ther 20(4):699–708

    Article  CAS  Google Scholar 

  41. Choudhury SR et al (2017) Viral vectors for therapy of neurologic diseases. Neuropharmacology 120:63–80

    Article  CAS  Google Scholar 

  42. Chen SH et al (2019) Recombinant viral vectors as neuroscience tools. Curr Protoc Neurosci 87(1):e67

    Article  Google Scholar 

  43. Chen SH et al (2019) Production of viral constructs for neuroanatomy, calcium imaging, and optogenetics. Curr Protoc Neurosci 87(1):e66

    Article  Google Scholar 

  44. Hocquemiller M et al (2016) Adeno-associated virus-based gene therapy for CNS diseases. Hum Gene Ther 27(7):478–496

    Article  CAS  Google Scholar 

  45. Zhang R et al (2019) Divergent engagements between adeno-associated viruses with their cellular receptor AAVR. Nat Commun 10(1):3760

    Article  Google Scholar 

  46. Pillay S et al (2016) An essential receptor for adeno-associated virus infection. Nature 530(7588):108–112

    Article  CAS  Google Scholar 

  47. Goertsen D et al (2022) AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat Neurosci 25(1):106–115

    Article  CAS  Google Scholar 

  48. Buning H, Srivastava A (2019) Capsid modifications for targeting and improving the efficacy of AAV vectors. Mol Ther Methods Clin Dev 12:248–265

    Article  Google Scholar 

  49. Royo NC et al (2008) Specific AAV serotypes stably transduce primary hippocampal and cortical cultures with high efficiency and low toxicity. Brain Res 1190:15–22

    Article  CAS  Google Scholar 

  50. Foust KD et al (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27(1):59–65

    Article  CAS  Google Scholar 

  51. Gray SJ et al (2011) Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol Ther 19(6):1058–1069

    Article  CAS  Google Scholar 

  52. Yang B et al (2014) Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10. Mol Ther 22(7):1299–1309

    Article  CAS  Google Scholar 

  53. Towne C et al (2008) Systemic AAV6 delivery mediating RNA interference against SOD1: neuromuscular transduction does not alter disease progression in fALS mice. Mol Ther 16(6):1018–1025

    Article  CAS  Google Scholar 

  54. Chen SJ et al (2013) Biodistribution of AAV8 vectors expressing human low-density lipoprotein receptor in a mouse model of homozygous familial hypercholesterolemia. Hum Gene Ther Clin Dev 24(4):154–160

    Article  CAS  Google Scholar 

  55. Ravindra Kumar S et al (2020) Multiplexed Cre-dependent selection yields systemic AAVs for targeting distinct brain cell types. Nat Methods 17(5):541–550

    Article  CAS  Google Scholar 

  56. Hordeaux J et al (2018) The neurotropic properties of AAV-PHP.B are limited to C57BL/6J mice. Mol Ther 26(3):664–668

    Article  CAS  Google Scholar 

  57. Burger C et al (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10(2):302–317

    Article  CAS  Google Scholar 

  58. Passini MA et al (2003) Intraventricular brain injection of adeno-associated virus type 1 (AAV1) in neonatal mice results in complementary patterns of neuronal transduction to AAV2 and total long-term correction of storage lesions in the brains of beta-glucuronidase-deficient mice. J Virol 77(12):7034–7040

    Article  CAS  Google Scholar 

  59. Cearley CN, Wolfe JH (2006) Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther 13(3):528–537

    Article  CAS  Google Scholar 

  60. Snyder BR et al (2011) Comparison of adeno-associated viral vector serotypes for spinal cord and motor neuron gene delivery. Hum Gene Ther 22(9):1129–1135

    Article  CAS  Google Scholar 

  61. Davidson BL et al (2000) Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci U S A 97(7):3428–3432

    Article  CAS  Google Scholar 

  62. Samaranch L et al (2013) Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates. Hum Gene Ther 24(5):526–532

    Article  CAS  Google Scholar 

  63. Wu Z, Asokan A, Samulski RJ (2006) Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 14(3):316–327

    Article  CAS  Google Scholar 

  64. Ip CW et al (2017) AAV1/2-induced overexpression of A53T-alpha-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinson’s disease. Acta Neuropathol Commun 5(1):11

    Article  Google Scholar 

  65. Yu H et al (2012) Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model. Proc Natl Acad Sci U S A 109(20):E1238–E1247

    Article  CAS  Google Scholar 

  66. Gray SJ et al (2010) Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood-brain barrier (BBB). Mol Ther 18(3):570–578

    Article  CAS  Google Scholar 

  67. von Jonquieres G et al (2013) Glial promoter selectivity following AAV-delivery to the immature brain. PLoS One 8(6):e65646

    Article  Google Scholar 

  68. He B et al (2012) Enhancing muscle membrane repair by gene delivery of MG53 ameliorates muscular dystrophy and heart failure in delta-Sarcoglycan-deficient hamsters. Mol Ther 20(4):727–735

    Article  CAS  Google Scholar 

  69. Qiao C et al (2011) Liver-specific microRNA-122 target sequences incorporated in AAV vectors efficiently inhibits transgene expression in the liver. Gene Ther 18(4):403–410

    Article  CAS  Google Scholar 

  70. Hordeaux J et al (2020) MicroRNA-mediated inhibition of transgene expression reduces dorsal root ganglion toxicity by AAV vectors in primates. Sci Transl Med 12(569):eaba9188

    Article  CAS  Google Scholar 

  71. Wang L et al (2016) Enhancing transgene expression from recombinant AAV8 vectors in different tissues using woodchuck hepatitis virus post-transcriptional regulatory element. Int J Med Sci 13(4):286–291

    Article  CAS  Google Scholar 

  72. Xu R et al (2001) Quantitative comparison of expression with adeno-associated virus (AAV-2) brain-specific gene cassettes. Gene Ther 8(17):1323–1332

    Article  CAS  Google Scholar 

  73. Galvan A et al (2021) Intracerebroventricular administration of AAV9-PHP.B SYN1-EmGFP induces widespread transgene expression in the mouse and monkey CNS. Hum Gene Ther. 32(11–12):599–615

    Article  CAS  Google Scholar 

  74. Lerchner W et al (2014) Injection parameters and virus dependent choice of promoters to improve neuron targeting in the nonhuman primate brain. Gene Ther 21(3):233–241

    Article  CAS  Google Scholar 

  75. Salmon P, Trono D (2007) Production and titration of lentiviral vectors. Curr Protoc Hum Genet Chapter 12:Unit 12.10

    Google Scholar 

  76. Gage FH, Temple S (2013) Neural stem cells: generating and regenerating the brain. Neuron 80(3):588–601

    Article  CAS  Google Scholar 

  77. Kato S, Kobayashi K, Kobayashi K (2014) Improved transduction efficiency of a lentiviral vector for neuron-specific retrograde gene transfer by optimizing the junction of fusion envelope glycoprotein. J Neurosci Methods 227:151–158

    Article  CAS  Google Scholar 

  78. Osakada F, Callaway EM (2013) Design and generation of recombinant rabies virus vectors. Nat Protoc 8(8):1583–1601

    Article  Google Scholar 

  79. Haberl MG et al (2015) An anterograde rabies virus vector for high-resolution large-scale reconstruction of 3D neuron morphology. Brain Struct Funct 220(3):1369–1379

    Article  CAS  Google Scholar 

  80. Chatterjee S et al (2018) Nontoxic, double-deletion-mutant rabies viral vectors for retrograde targeting of projection neurons. Nat Neurosci 21(4):638–646

    Article  CAS  Google Scholar 

  81. Ciabatti E et al (2017) Life-long genetic and functional access to neural circuits using self-inactivating rabies virus. Cell 170(2):382–392 e14

    Article  CAS  Google Scholar 

  82. Xiong C et al (1989) Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science 243(4895):1188–1191

    Article  CAS  Google Scholar 

  83. Uyaniker S et al (2019) The effects of Sindbis viral vectors on neuronal function. Front Cell Neurosci 13:362

    Article  CAS  Google Scholar 

  84. Aschauer DF, Kreuz S, Rumpel S (2013) Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 8(9):e76310

    Article  CAS  Google Scholar 

  85. Liu G et al (2005) Adeno-associated virus type 4 (AAV4) targets ependyma and astrocytes in the subventricular zone and RMS. Gene Ther 12(20):1503–1508

    Article  CAS  Google Scholar 

  86. Joglekar AV, Sandoval S (2017) Pseudotyped lentiviral vectors: one vector, many guises. Hum Gene Ther Methods 28(6):291–301

    Article  CAS  Google Scholar 

  87. Watson DJ et al (2002) Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol Ther 5(5 Pt 1):528–537

    Article  CAS  Google Scholar 

  88. Liehl B et al (2007) Simian immunodeficiency virus vector pseudotypes differ in transduction efficiency and target cell specificity in brain. Gene Ther 14(18):1330–1343

    Article  CAS  Google Scholar 

  89. Rahim AA et al (2009) Efficient gene delivery to the adult and fetal CNS using pseudotyped non-integrating lentiviral vectors. Gene Ther 16(4):509–520

    Article  CAS  Google Scholar 

  90. Oliver KR, Fazakerley JK (1998) Transneuronal spread of Semliki Forest virus in the developing mouse olfactory system is determined by neuronal maturity. Neuroscience 82(3):867–877

    Article  CAS  Google Scholar 

  91. Poluri A et al (2008) Functional pseudotyping of human immunodeficiency virus type 1 vectors by Western equine encephalitis virus envelope glycoprotein. J Virol 82(24):12580–12584

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Negin P. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, SH., He, B., Singh, S., Martin, N.P. (2023). Vector Tropism. In: Eldridge, M.A., Galvan, A. (eds) Vectorology for Optogenetics and Chemogenetics. Neuromethods, vol 195. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2918-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2918-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2917-8

  • Online ISBN: 978-1-0716-2918-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics