Skip to main content

Structural Analyses of the Glycolipids in Lipid Rafts

  • Protocol
  • First Online:
Glycolipids

Abstract

Lipid rafts are usually isolated from cells or tissues using sucrose gradient ultracentrifugation in the presence of detergents such as Triton X-100 at 4 °C. Although detergents should be removed for further structural characterization following fractionation, these compounds are often difficult to completely remove, especially from the glycolipids. In this chapter, we describe a novel method for the fast and convenient removal of detergents from lipid raft glycolipids following fraction and describe the application of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miller JM, Joshi C, Sharma P, Baskaran A, Baskaran A, Grason GM et al (2019) Conformational switching of chiral colloidal rafts regulates raft-raft attractions and repulsions. Proc Natl Acad Sci U S A 116:15792–15801

    Article  CAS  Google Scholar 

  2. Hirama T, Lu SM, Kay JG, Maekawa M, Kozlov MM, Grinstein S et al (2017) Membrane curvature induced by proximity of anionic phospholipids can initiate endocytosis. Nat Commun 8:1393

    Article  Google Scholar 

  3. Schoch RL, Brown FLH, Haran G (2021) Correlated diffusion in lipid bilayers. Proc Natl Acad Sci U S A 118:e2113202118

    Article  CAS  Google Scholar 

  4. Jan Akhunzada M, D’Autilia F, Chandramouli B, Bhattacharjee N, Catte A, Di Rienzo R et al (2019) Interplay between lipid lateral diffusion, dye concentration and membrane permeability unveiled by a combined spectroscopic and computational study of a model lipid bilayer. Sci Rep 9:1508

    Article  Google Scholar 

  5. Raghunathan K, Kenworthy AK (2018) Dynamic pattern generation in cell membranes: current insights into membrane organization. Biochim Biophys Acta Biomembr 1860:2018–2031

    Article  CAS  Google Scholar 

  6. Komura N, Suzuki KG, Ando H, Konishi M, Koikeda M, Imamura A et al (2016) Raft-based interactions of gangliosides with a GPI-anchored receptor. Nat Chem Biol 12:402–410

    Article  CAS  Google Scholar 

  7. Diaz-Rohrer BB, Levental KR, Simons K, Levental I (2014) Membrane raft association is a determinant of plasma membrane localization. Proc Natl Acad Sci U S A 111:8500–8505

    Article  CAS  Google Scholar 

  8. Aizaki H, Lee KJ, Sung VM, Ishiko H, Lai MM (2004) Characterization of the hepatitis C virus RNA replication complex associated with lipid rafts. Virology 324:450–461

    Article  CAS  Google Scholar 

  9. Cho YY, Kwon OH, Park MK, Kim TW, Chung S (2019) Elevated cellular cholesterol in Familial Alzheimer's presenilin 1 mutation is associated with lipid raft localization of beta-amyloid precursor protein. PLoS One 14:e0210535

    Article  CAS  Google Scholar 

  10. Casadei BR, De Oliveira Carvalho P, Riske KA, Barbosa Rde M, De Paula E, Domingues CC (2014) Brij detergents reveal new aspects of membrane microdomain in erythrocytes. Mol Membr Biol 31:195–205

    Article  CAS  Google Scholar 

  11. Schuck S, Honsho M, Ekroos K, Shevchenko A, Simons K (2003) Resistance of cell membranes to different detergents. Proc Natl Acad Sci U S A 100:5795–5800

    Article  CAS  Google Scholar 

  12. Macdonald JL, Pike LJ (2005) A simplified method for the preparation of detergent-free lipid rafts. J Lipid Res 46:1061–1067

    Article  CAS  Google Scholar 

  13. Waugh MG, Chu KM, Clayton EL, Minogue S, Hsuan JJ (2011) Detergent-free isolation and characterization of cholesterol-rich membrane domains from trans-Golgi network vesicles. J Lipid Res 52:582–589

    Article  CAS  Google Scholar 

  14. Kennedy C, Nelson MD, Bamezai AK (2011) Analysis of detergent-free lipid rafts isolated from CD4+ T cell line: interaction with antigen presenting cells promotes coalescing of lipid rafts. Cell Commun Signal 9:31

    Article  CAS  Google Scholar 

  15. Gu RX, Baoukina S, Tieleman DP (2020) Phase separation in atomistic simulations of model membranes. J Am Chem Soc 142:2844–2856

    Article  CAS  Google Scholar 

  16. Ghysels A, Kramer A, Venable RM, Teague WE Jr, Lyman E, Gawrisch K et al (2019) Permeability of membranes in the liquid ordered and liquid disordered phases. Nat Commun 10:5616

    Article  CAS  Google Scholar 

  17. Tao J, Yu X, Guo Y, Wang G, Ju H, Ding L (2020) Proximity enzymatic glyco-remodeling enables direct and highly efficient lipid raft imaging on live cells. Anal Chem 92:7232–7239

    Article  CAS  Google Scholar 

  18. Yeung YG, Stanley ER (2010) Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis. Curr Protoc Protein Sci Chapter 16:Unit 16.12

    Google Scholar 

  19. Rey M, Mrazek H, Pompach P, Novak P, Pelosi L, Brandolin G et al (2010) Effective removal of nonionic detergents in protein mass spectrometry, hydrogen/deuterium exchange, and proteomics. Anal Chem 82:5107–5116

    Article  CAS  Google Scholar 

  20. Yeung YG, Nieves E, Angeletti RH, Stanley ER (2008) Removal of detergents from protein digests for mass spectrometry analysis. Anal Biochem 382:135–137

    Article  CAS  Google Scholar 

  21. Suzuki Y, Kabayama K (2012) Convenient and rapid removal of detergent from glycolipids in detergent-resistant membrane microdomains. J Lipid Res 53:599–608

    Article  CAS  Google Scholar 

  22. Kojima H, Suzuki Y, Ito M, Kabayama K (2015) Structural characterization of neutral glycosphingolipids from 3T3-L1 adipocytes. Lipids 50:913–917

    Article  CAS  Google Scholar 

  23. Hisashi K, Yusuke S, Anila M, Kazuya K, Kojima H, Yasunori K (2013) Simple and rapid removal of the interference in gangliosides extracted from HPTLC spot on MALDI-TOF MS analysis. Anal Methods 5:6617–6621

    Article  Google Scholar 

  24. Matsushita S, Hasegawa T, Hiraoka M, Hayashi A, Suzuki Y (2021) TLC-based MS imaging analysis of glycosphingolipids and glycerin fatty acid esters after 1,2-dichloroethane washing. Anal Sci 37:1491–1495

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Suzuki, Y., Kabayama, K. (2023). Structural Analyses of the Glycolipids in Lipid Rafts. In: Kabayama, K., Inokuchi, Ji. (eds) Glycolipids. Methods in Molecular Biology, vol 2613. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2910-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2910-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2909-3

  • Online ISBN: 978-1-0716-2910-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics