Skip to main content

Detection Methods for H1N1 Virus

  • Protocol
  • First Online:
Virus-Host Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2610))

Abstract

Influenza A virus H1N1, a respiratory virus transmitted via droplets and responsible for the global pandemic in 2009, belongs to the Orthomyxoviridae family, a single-negative-stranded RNA. It possesses glycoprotein spikes neuraminidase (NA), hemagglutinin (HA), and a matrix protein named M2. The Covid-19 pandemic affected the world population belongs to the respiratory virus category is currently mutating, this can also be observed in the case of H1N1 influenza A virus. Mutations in H1N1 can enhance the viral capacity which can lead to another pandemic. This virus affects children below 5 years, pregnant women, old age people, and immunocompromised individuals due to its high viral capacity. Its early detection is necessary for the patient’s recovery time. In this book chapter, we mainly focus on the detection methods for H1N1, from traditional ones to the most advance including biosensors, RT-LAMP, multi-fluorescent PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mena I, Nelson MI, Quezada-Monroy F, Dutta J et al (2016) Origins of the 2009 H1N1 influenza pandemic in swine in Mexico. elife 5:e16777

    Article  Google Scholar 

  2. Paules C, Subbarao K (2017) Influenza. Lancet 390:697–708

    Article  Google Scholar 

  3. Blut A, Bewertung U, Krankheitserreger B (2009) Influenza virus. Transfus Med Hemother 35:42–49

    Google Scholar 

  4. Li H (2015) Influenza A (H1N1), p 1

    Google Scholar 

  5. Burton DR, Poignard P, Stanfield RL, Wilson IA (2012) Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science 337:183–186

    Article  CAS  Google Scholar 

  6. Martinez O, Tsibane T, Basler CF (2009) Neutralizing anti-influenza virus monoclonal antibodies: therapeutics and tools for discovery. Int Rev Immunol 28:69–92

    Article  CAS  Google Scholar 

  7. Xing Y, Wang P, Zang Y et al (2013) A colorimetric method for H1N1 DNA detection using rolling circle amplification. Analyst 138:3457–3462

    Article  CAS  Google Scholar 

  8. Kim Y, Abafogi AT, Tran BM et al (2020) Integrated microfluidic preconcentration and nucleic amplification system for detection of influenza a virus H1N1 in saliva. Micromachines 11:1–11

    Google Scholar 

  9. Yamanaka K, Saito M, Kondoh K et al (2011) Rapid detection for primary screening of influenza A virus: microfluidic RT-PCR chip and electrochemical DNA sensor. Analyst 136:2064–2068

    Article  CAS  Google Scholar 

  10. Wu LT, Curran MD, Ellis JS et al (2010) Nucleic acid dipstick test for molecular diagnosis of pandemic H1N1. J Clin Microbiol 48:3608–3613

    Article  CAS  Google Scholar 

  11. Kubo T, Agoh M, Mai LQ et al (2010) Development of a reverse transcription-loop-mediated isothermal amplification assay for detection of pandemic (H1N1) 2009 virus as a novel molecular method for diagnosis of pandemic influenza in resource-limited settings. J Clin Microbiol 48:728–735

    Article  CAS  Google Scholar 

  12. Dong H, Zhang Y, Xiong H et al (2010) Detection of human novel influenza A (H1N1) viruses using multi-fluorescent real-time RT-PCR. Virus Res 147:85–90

    Article  CAS  Google Scholar 

  13. Kumar S, Henrickson KJ (2012) Update on influenza diagnostics: lessons from the novel H1N1 influenza A pandemic. Clin Microbiol Rev 25:344–361

    Article  CAS  Google Scholar 

  14. Roa PL, Catalán P, Giannella M, de Viedma DG, Sandonis V, Bouza E (2011) Comparison of real-time RT-PCR, shell vial culture, and conventional cell culture for the detection of the pandemic influenza A (H1N1) in hospitalized patients. Diagn Microbiol Infect Dis 69:428–431

    Article  CAS  Google Scholar 

  15. Louie JK, Guevara H, Boston E et al (2010) Rapid influenza antigen test for diagnosis of pandemic (H1N1) 2009. Emerg Infect Dis 16:824–826

    Article  Google Scholar 

  16. Choi YJ, Kim HJ, Park JS et al (2010) Evaluation of new rapid antigen test for detection of pandemic influenza A/H1N1 2009 virus. J Clin Microbiol 48:2260–2262

    Article  Google Scholar 

  17. Zhao W, Ali MM, Brook MA, Li Y (2008) Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. Angew Chem Int Ed 47:6330–6337

    Article  CAS  Google Scholar 

  18. Capobianco ML, Carcuro A, Tondelli L, Garbesi A, Bonora GM (1990) One pot solution synthesis of cyclic oligodeoxyribonucleotides. Nucleic Acids Res 18:2661–2669

    Article  CAS  Google Scholar 

  19. Poon LM, Chan KH, Smith GJ, Leung CSW, Guan Y, Yuen KY, Peiris JSM (2009) Molecular detection of a novel human influenza (H1N1) of pandemic potential by conventional and real-time quantitative RT- PCR assays. Bull Acad Sci USSR Div Chem Sci 31:2312–2314

    Google Scholar 

  20. Tomita N, Mori Y, Kanda H, Notomi T (2008) Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3:877–882

    Article  CAS  Google Scholar 

  21. Notomi T, Okayama H, Masubuchi H et al (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63

    Article  CAS  Google Scholar 

  22. Sharma V, Chaudhry D, Kaushik S (2018) Evaluation of clinical applicability of reverse transcription-loop- mediated isothermal amplification assay for detection and subtyping of Influenza A viruses. J Virol Methods 253:18–25

    Article  CAS  Google Scholar 

  23. Kovac J, Rolon ML, Naum M, Lampel KA (2022) DNA-based assays. In: Reference module in food science, pp 356–362

    Google Scholar 

  24. Duchamp MB, Casalegno JS, Gillet Y et al (2010) Pandemic A(H1N1)2009 influenza virus detection by real time RT-PCR: is viral quantification useful? Clin Microbiol Infect 16:317–321

    Article  CAS  Google Scholar 

  25. Shu B, Wu KH, Emery S et al (2011) Design and performance of the CDC real-time reverse transcriptase PCR Swine Flu Panel for detection of 2009 A (H1N1) pandemic influenza virus. J Clin Microbiol 49:2614–2619

    Article  CAS  Google Scholar 

  26. Harmon KM, Yoon KJ (1999) Application of PCR assay to differentiate two subtypes of swine influenza viruses. Swine Res Rep 42

    Google Scholar 

  27. Zaki AM, Taha SE, Mohammed HS (2019) Post-pandemic influenza A (H1N1) virus detection by real- time PCR and virus isolation. Korean J Microbiol 55:25–32

    Google Scholar 

  28. Mahony JB, Mahony JB (2008) Detection of respiratory viruses by molecular methods. Clin Microbiol Rev 21(4):716–747

    Article  CAS  Google Scholar 

  29. Janke BH (2000) Diagnosis of swine influenza. J Swine Health Prod 8:79–84

    Google Scholar 

  30. WHO Expert Committee on respiratory virus diseases. First report. Geneva, 1959 (WHO Technical report series, No. 170)

    Google Scholar 

  31. Hoyle L, Fairbrother BW (1937) Isolation of influenza virus and relation of antibodies to infection and immunity. Br Med J 1:10–1136

    Google Scholar 

  32. Morrison AP, Shaw DR, Kenney AS, Stokes JJ (1939) Complement-fixation studies on the sera of individuals vaccinated with active virus of human influenza. Am J Med Sci 197:253–260

    Article  Google Scholar 

  33. Eaton MD, Rickard EE, Ingraham HS, Chant HL (1941) Application of the complement-fixation test to the study of epidemic influenza. Am J Hyg 33:23–35

    Google Scholar 

  34. Fairbrother RW, Hoyle L (1937) Observations on the aetiology of influenza. J Pathol Bacteriol 44:213–223

    Article  Google Scholar 

  35. Tulloch WJ (1939) Observations on the virus of influenza, with a view to elaborating a simple diagnostic test whereby its presence in the respiratory tract of man may be revealed – part I. Edinb Med J 46(2):117

    CAS  Google Scholar 

  36. Dowdle WR, Galphin JC, Coleman MT, Schild GC (1974) A simple double immunodiffusion test for typing influenza viruses. Bull World Health Organ 51:213–218

    CAS  Google Scholar 

  37. Schild GC, Wood JM, Newman RW (1975) A single-radial-immunodiffusion technique for the assay of influenza haemagglutinin antigen: proposals for an assay method for the haemagglutinin content of influenza vaccines. Bull World Health Organ 52:223–231

    CAS  Google Scholar 

  38. Williams MS (1993) Single-radial-immunodiffusion as an in vitro potency assay for human inactivated viral vaccines. Vet Microbiol 37:253–262

    Article  CAS  Google Scholar 

  39. Choi Y, Lee S, Kwon SY, Lee Y, Park YK, Ban SJ (2017) Analysis of the proficiency of single radial immunodiffusion assays for quality control of influenza vaccines in Korea. Biologicals 50:137–140

    Article  CAS  Google Scholar 

  40. Rodda SJ, Gallichio HA, Hampson AW (1981) The single radial immunodiffusion assay highlights small antigenic differences among influenza virus hemagglutinins. J Clin Microbiol 14:479–482

    Article  CAS  Google Scholar 

  41. Lu C, Chang L, Chen P, Xia N (2012) A highly specific ELISA for diagnosis of 2009 influenza A (H1N1) virus infections. J Formos Med Assoc 111:693–697

    Article  CAS  Google Scholar 

  42. Lebarbenchon C, Brown JD, Luttrell MP, Stallknecht DE (2012) Comparison of two commercial enzyme-linked immunosorbent assays for detection of Influenza A virus antibodies. J Vet Diagn Investig 24:161–165

    Article  Google Scholar 

  43. Katz JM, Hancock K (2011) Serologic assays for influenza surveillance, diagnosis and vaccine evaluation. Expert Rev Anti-Infect Ther 9:669–683

    Article  Google Scholar 

  44. Shim DH, Kim MJ, Cha HR et al (2019) Development of a ha1-specific enzyme-linked immunosorbent assay against pandemic influenza virus a h1n1. Clin Exp Vaccine Res 8:70–76

    Article  CAS  Google Scholar 

  45. Muyldermans S (2013) Nanobodies: natural single-domain antibodies. Annu Rev Biochem 82:775–797

    Article  CAS  Google Scholar 

  46. Mir MA, Mehraj U, Sheikh BA, Hamdani SS (2020) Nanobodies: the “magic bullets” in therapeutics, drug delivery and diagnostics. Hum Antibodies 28:29–51

    Article  CAS  Google Scholar 

  47. Steeland S, Vandenbroucke RE, Libert C (2016) Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today 21:1076–1113

    Article  CAS  Google Scholar 

  48. Du T, Zhu G, Wu X, Fang J, Zhou EM (2019) Biotinylated single-domain antibody-based blocking ELISA for detection of antibodies against swine influenza virus. Int J Nanomedicine 14:9337–9349

    Article  CAS  Google Scholar 

  49. Julkunen I, Pyhala R, Hovi T (1985) Enzyme immunoassay, complement fixation and hemagglutination inhibition tests in the diagnosis of influenza A and B virus infections. Purified hemagglutinin in subtype-specific diagnosis. J Virol Methods 10:75–84

    Article  CAS  Google Scholar 

  50. Pedersen JC (2014) Hemagglutination-inhibition assay for influenza virus subtype identification and the detection and quantitation of serum antibodies to influenza virus. Methods Mol Biol 1161:11–25

    Article  Google Scholar 

  51. Reber A, Katz J (2013) Immunological assessment of influenza vaccines and immune correlates of protection. Expert Rev Vaccines 12:519–536

    Article  CAS  Google Scholar 

  52. Zacour M, Ward BJ, Brewer A et al (2016) Standardization of hemagglutination inhibition assay for influenza serology allows for high reproducibility between laboratories. Clin Vaccine Immunol 23:236–242

    Article  CAS  Google Scholar 

  53. Muthana A (2012) Comparison between haemagglutination inhibition and complement fixation tests in detecting antibodies responses following influenza viral infection. Egypt Acad J Biol Sci G Microbiol 4:35–38

    Google Scholar 

  54. Prince HE, Leber AL (2003) Comparison of complement fixation and hemagglutination inhibition assays for detecting antibody responses following influenza virus vaccination. Clin Diagn Lab Immunol 10:481–482

    CAS  Google Scholar 

  55. Su LC, Chang CM, Tseng YL et al (2012) Rapid and highly sensitive method for influenza A (H1N1) virus detection. Anal Chem 84:3914–3920

    Article  CAS  Google Scholar 

  56. Nidzworski D, Siuzdak K, Niedziałkowski P et al (2017) A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Sci Rep 7:1–10

    Article  CAS  Google Scholar 

  57. Peduru Hewa TM, Tannock GA, Mainwaring DE, Harrison S, Fecondo JV (2009) The detection of influenza A and B viruses in clinical specimens using a quartz crystal microbalance. J Virol Methods 162:14–21

    Article  CAS  Google Scholar 

  58. Singh R, Hong S, Jang J (2017) Label-free detection of influenza viruses using a reduced graphene oxide-based electrochemical immunosensor integrated with a microfluidic platform. Sci Rep 7:1–11

    Google Scholar 

  59. Kimmel DW, Leblanc G, Meschievitz ME, Cli DE (2012) Electrochemical sensors and biosensors. Anal Chem 84(2):685–707

    Article  CAS  Google Scholar 

  60. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763

    Article  CAS  Google Scholar 

  61. Radecka H, Radecki J, Radecka H, Radecki J (2016) Electrochemical sensors for detections of influenza fundamentals and applications viruses. In: Steps forwards in diagnosing and controlling influenza, p 2016

    Google Scholar 

  62. Ravina, Mohan H, Gill PS, Kumar A (2019) Hemagglutinin gene based biosensor for early detection of swine flu (H1N1) infection in human. Int J Biol Macromol 130:720–726

    Article  CAS  Google Scholar 

  63. Park JA, Kim J, Kim SM, Sohn H, Park C, Kim TH, Lee JH, Lee MH, Lee T (2021) Fabrication of electrochemical influenza virus (H1n1) biosensor composed of multifunctional DNA four-way junction and molybdenum disulfide hybrid material. Materials 14(2):343

    Article  CAS  Google Scholar 

  64. Chrouda A, Sbartai A, Bessueille F, Renaud L, Maaref A, Jaffrezic-Renault N (2015) Electrically addressable deposition of diazonium-functionalized antibodies on boron-doped diamond microcells for the detection of ochratoxin A. Anal Methods 7:2444–2451

    Article  CAS  Google Scholar 

  65. Enache TA, Oliveira-Brett AM (2011) Boron doped diamond and glassy carbon electrodes comparative study of the oxidation behaviour of cysteine and methionine. Bioelectrochemistry 81:46

    Article  CAS  Google Scholar 

  66. Nidzworski D, Pranszke P, Grudniewska M, Król E, Gromadzka B (2014) Universal biosensor for detection of influenza virus. Biosens Bioelectron 59:239–242

    Article  CAS  Google Scholar 

  67. Nidzworski D, Siuzdak K, Niedziałkowski P, Bogdanowicz R, Sobaszek M, Ryl J, Weiher P et al (2017) A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Sci Rep 7:1–10

    Article  CAS  Google Scholar 

  68. Lee N, Wang C, Park J (2018) User-friendly point-of-care detection of influenza A (H1N1) virus using light guide in three-dimensional photonic crystal. RSC Adv 8:22991–22997

    Article  CAS  Google Scholar 

  69. Bai C, Lu Z, Jiang H et al (2018) Aptamer selection and application in multivalent binding-based electrical impedance detection of inactivated H1N1 virus. Biosens Bioelectron 110:162–167

    Article  Google Scholar 

  70. Li J, Lin R, Yang Y et al (2021) Multichannel immunosensor platform for the rapid detection of SARS- CoV-2 and Influenza A(H1N1) virus. ACS Appl Mater Interfaces 13:22262–22270

    Article  CAS  Google Scholar 

  71. Lee D, Chander Y, Goyal SM, Cui T (2011) Carbon nanotube electric immunoassay for the detection of swine influenza virus H1N1. Biosens Bioelectron 26:3482–3487

    Article  CAS  Google Scholar 

  72. Ahmed SR, Kim J, Tran VT et al (2017) In situ self-assembly of gold nanoparticles on hydrophilic and hydrophobic substrates for influenza virus-sensing platform. Sci Rep 7:1–11

    Article  Google Scholar 

  73. Lee KG, Lee TJ, Jeong SW et al (2012) Development of a plastic-based microfluidic immunosensor chip for detection of H1N1 influenza. Sensors (Switzerland) 12:10810–10819

    Article  CAS  Google Scholar 

  74. Critchley P, Dimmock NJ (2004) Binding of an influenza A virus to a neomembrane measured by surface plasmon resonance. Bioorg Med Chem 12:2773–2780

    Article  CAS  Google Scholar 

  75. Lee WS, Kang T, Kim SH, Jeong J (2018) An antibody-immobilized silica inverse opal nanostructure for label-free optical biosensors. Sensors (Switzerland) 18:1–10

    CAS  Google Scholar 

  76. Hai W, Goda T, Takeuchi H et al (2017) Specific recognition of human influenza virus with PEDOT bearing sialic acid-terminated trisaccharides. ACS Appl Mater Interfaces 9:14162–14170

    Article  CAS  Google Scholar 

  77. Veguilla V, Hancock K, Schiffer J et al (2011) Sensitivity and specificity of serologic assays for detection of human infection with 2009 pandemic H1N1 virus in U.S. populations. J Clin Microbiol 49:2210–2215

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Mohan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ravina, Subodh, Sharma, K.K., Mohan, H. (2023). Detection Methods for H1N1 Virus. In: Aquino de Muro, M. (eds) Virus-Host Interactions. Methods in Molecular Biology, vol 2610. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2895-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2895-9_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2894-2

  • Online ISBN: 978-1-0716-2895-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics