Skip to main content

LINE-1 Retrotransposition Assays in Embryonic Stem Cells

  • Protocol
  • First Online:
Transposable Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2607))

Abstract

The ongoing mobilization of active non-long terminal repeat (LTR) retrotransposons continues to impact the genomes of most mammals, including humans and rodents. Non-LTR retrotransposons mobilize using an intermediary RNA and a copy-and-paste mechanism termed retrotransposition. Non-LTR retrotransposons are subdivided into long and short interspersed elements (LINEs and SINEs, respectively), depending on their size and autonomy; while active class 1 LINEs (LINE-1s or L1s) encode the enzymatic machinery required to mobilize in cis, active SINEs use the enzymatic machinery of active LINE-1s to mobilize in trans. The mobilization mechanism used by LINE-1s/SINEs was exploited to develop ingenious plasmid-based retrotransposition assays in cultured cells, which typically exploit a reporter gene that can only be activated after a round of retrotransposition. Retrotransposition assays, in cis or in trans, are instrumental tools to study the biology of mammalian LINE-1s and SINEs. In fact, these and other biochemical/genetic assays were used to uncover that endogenous mammalian LINE-1s/SINEs naturally retrotranspose during early embryonic development. However, embryonic stem cells (ESCs) are typically used as a cellular model in these and other studies interrogating LINE-1/SINE expression/regulation during early embryogenesis. Thus, human and mouse ESCs represent an excellent model to understand how active retrotransposons are regulated and how their activity impacts the germline. Here, we describe robust and quantitative protocols to study human/mouse LINE-1 (in cis) and SINE (in trans) retrotransposition using (human and mice) ESCs. These protocols are designed to study the mobilization of active non-LTR retrotransposons in a cellular physiologically relevant context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921. https://doi.org/10.1038/35057062

    Article  CAS  PubMed  Google Scholar 

  2. Mouse Genome Sequencing C, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O’Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562. https://doi.org/10.1038/nature01262

    Article  CAS  Google Scholar 

  3. Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HH Jr (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A 100(9):5280–5285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, Badge RM, Moran JV (2010) LINE-1 retrotransposition activity in human genomes. Cell 141(7):1159–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goodier JL, Ostertag EM, Du K, Kazazian HH Jr (2001) A novel active L1 retrotransposon subfamily in the mouse. Genome Res 11(10):1677–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Naas TP, DeBerardinis RJ, Moran JV, Ostertag EM, Kingsmore SF, Seldin MF, Hayashizaki Y, Martin SL, Kazazian HH (1998) An actively retrotransposing, novel subfamily of mouse L1 elements. EMBO J 17(2):590–597. https://doi.org/10.1093/emboj/17.2.590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. DeBerardinis RJ, Goodier JL, Ostertag EM, Kazazian HH Jr (1998) Rapid amplification of a retrotransposon subfamily is evolving the mouse genome. Nat Genet 20(3):288–290. https://doi.org/10.1038/3104

    Article  CAS  PubMed  Google Scholar 

  8. Furano AV (2000) The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. Prog Nucleic Acid Res Mol Biol 64:255–294. https://doi.org/10.1016/s0079-6603(00)64007-2

    Article  CAS  PubMed  Google Scholar 

  9. Dombroski BA, Mathias SL, Nanthakumar E, Scott AF, Kazazian HH Jr (1991) Isolation of an active human transposable element. Science 254(5039):1805–1808

    Article  CAS  PubMed  Google Scholar 

  10. Skowronski J, Fanning TG, Singer MF (1988) Unit-length line-1 transcripts in human teratocarcinoma cells. Mol Cell Biol 8(4):1385–1397. https://doi.org/10.1128/mcb.8.4.1385-1397.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fanning TG (1983) Size and structure of the highly repetitive BAM HI element in mice. Nucleic Acids Res 11(15):5073–5091. https://doi.org/10.1093/nar/11.15.5073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Swergold GD (1990) Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol Cell Biol 10(12):6718–6729

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Usdin K, Furano AV (1989) The structure of the guanine-rich polypurine:polypyrimidine sequence at the right end of the rat L1 (LINE) element. J Biol Chem 264(26):15681–15687

    Article  CAS  PubMed  Google Scholar 

  14. Moran JV, DeBerardinis RJ, Kazazian HH Jr (1999) Exon shuffling by L1 retrotransposition. Science 283(5407):1530–1534. https://doi.org/10.1126/science.283.5407.1530

    Article  CAS  PubMed  Google Scholar 

  15. Speek M (2001) Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol 21(6):1973–1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zemojtel T, Penzkofer T, Schultz J, Dandekar T, Badge R, Vingron M (2007) Exonization of active mouse L1s: a driver of transcriptome evolution? BMC Genomics 8:392. https://doi.org/10.1186/1471-2164-8-392

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li J, Kannan M, Trivett AL, Liao H, Wu X, Akagi K, Symer DE (2014) An antisense promoter in mouse L1 retrotransposon open reading frame-1 initiates expression of diverse fusion transcripts and limits retrotransposition. Nucleic Acids Res 42(7):4546–4562. https://doi.org/10.1093/nar/gku091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hohjoh H, Singer MF (1997) Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J 16(19):6034–6043. https://doi.org/10.1093/emboj/16.19.6034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hohjoh H, Singer MF (1997) Ribonuclease and high salt sensitivity of the ribonucleoprotein complex formed by the human LINE-1 retrotransposon. J Mol Biol 271(1):7–12. https://doi.org/10.1006/jmbi.1997.1159

    Article  CAS  PubMed  Google Scholar 

  20. Martin SL, Li J, Weisz JA (2000) Deletion analysis defines distinct functional domains for protein-protein and nucleic acid interactions in the ORF1 protein of mouse LINE-1. J Mol Biol 304(1):11–20. https://doi.org/10.1006/jmbi.2000.4182

    Article  CAS  PubMed  Google Scholar 

  21. Martin SL (1991) Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol Cell Biol 11(9):4804–4807. https://doi.org/10.1128/mcb.11.9.4804-4807.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Martin SL, Bushman FD (2001) Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol Cell Biol 21(2):467–475. https://doi.org/10.1128/MCB.21.2.467-475.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Feng Q, Moran JV, Kazazian HH Jr, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87(5):905–916. https://doi.org/10.1016/s0092-8674(00)81997-2

    Article  CAS  PubMed  Google Scholar 

  24. Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A (1991) Reverse transcriptase encoded by a human transposable element. Science 254(5039):1808–1810. https://doi.org/10.1126/science.1722352

    Article  CAS  PubMed  Google Scholar 

  25. Garcia-Perez JL, Widmann TJ, Adams IR (2016) The impact of transposable elements on mammalian development. Development 143(22):4101–4114. https://doi.org/10.1242/dev.132639

    Article  CAS  PubMed  Google Scholar 

  26. Richardson SR, Doucet AJ, Kopera HC, Moldovan JB, Garcia-Perez JL, Moran JV (2015) The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiol Spectr 3(2):MDNA3-0061-2014. https://doi.org/10.1128/microbiolspec.MDNA3-0061-2014

    Article  CAS  PubMed  Google Scholar 

  27. Goodier JL (2016) Restricting retrotransposons: a review. Mob DNA 7:16. https://doi.org/10.1186/s13100-016-0070-z

    Article  PubMed  PubMed Central  Google Scholar 

  28. Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH Jr (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87(5):917–927. https://doi.org/10.1016/s0092-8674(00)81998-4

    Article  CAS  PubMed  Google Scholar 

  29. Martin SL, Cruceanu M, Branciforte D, Wai-Lun Li P, Kwok SC, Hodges RS, Williams MC (2005) LINE-1 retrotransposition requires the nucleic acid chaperone activity of the ORF1 protein. J Mol Biol 348(3):549–561

    Article  CAS  PubMed  Google Scholar 

  30. Lindtner S, Felber BK, Kjems J (2002) An element in the 3′ untranslated region of human LINE-1 retrotransposon mRNA binds NXF1(TAP) and can function as a nuclear export element. RNA 8(3):345–356. https://doi.org/10.1017/s1355838202027759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alisch RS, Garcia-Perez JL, Muotri AR, Gage FH, Moran JV (2006) Unconventional translation of mammalian LINE-1 retrotransposons. Genes Dev 20(2):210–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dmitriev SE, Andreev DE, Terenin IM, Olovnikov IA, Prassolov VS, Merrick WC, Shatsky IN (2007) Efficient translation initiation directed by the 900-nucleotide-long and GC-rich 5′ untranslated region of the human retrotransposon LINE-1 mRNA is strictly cap dependent rather than internal ribosome entry site mediated. Mol Cell Biol 27(13):4685–4697. https://doi.org/10.1128/MCB.02138-06. MCB.02138-06 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wei W, Gilbert N, Ooi SL, Lawler JF, Ostertag EM, Kazazian HH, Boeke JD, Moran JV (2001) Human L1 retrotransposition: cis preference versus trans complementation. Mol Cell Biol 21(4):1429–1439. https://doi.org/10.1128/MCB.21.4.1429-1439.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Esnault C, Maestre J, Heidmann T (2000) Human LINE retrotransposons generate processed pseudogenes. Nat Genet 24(4):363–367

    Article  CAS  PubMed  Google Scholar 

  35. Doucet AJ, Hulme AE, Sahinovic E, Kulpa DA, Moldovan JB, Kopera HC, Athanikar JN, Hasnaoui M, Bucheton A, Moran JV, Gilbert N (2010) Characterization of LINE-1 ribonucleoprotein particles. PLoS Genet 6(10). https://doi.org/10.1371/journal.pgen.1001150. e1001150 [pii]

  36. Kulpa DA, Moran JV (2005) Ribonucleoprotein particle formation is necessary but not sufficient for LINE-1 retrotransposition. Hum Mol Genet 14(21):3237–3248. https://doi.org/10.1093/hmg/ddi354. ddi354 [pii]

    Article  CAS  PubMed  Google Scholar 

  37. Kubo S, Seleme MC, Soifer HS, Perez JL, Moran JV, Kazazian HH Jr, Kasahara N (2006) L1 retrotransposition in nondividing and primary human somatic cells. Proc Natl Acad Sci U S A 103(21):8036–8041. https://doi.org/10.1073/pnas.0601954103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Macia A, Widmann TJ, Heras SR, Ayllon V, Sanchez L, Benkaddour-Boumzaouad M, Munoz-Lopez M, Rubio A, Amador-Cubero S, Blanco-Jimenez E, Garcia-Castro J, Menendez P, Ng P, Muotri AR, Goodier JL, Garcia-Perez JL (2017) Engineered LINE-1 retrotransposition in nondividing human neurons. Genome Res 27(3):335–348. https://doi.org/10.1101/gr.206805.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mita P, Wudzinska A, Sun X, Andrade J, Nayak S, Kahler DJ, Badri S, LaCava J, Ueberheide B, Yun CY, Fenyo D, Boeke JD (2018) LINE-1 protein localization and functional dynamics during the cell cycle. elife 7. https://doi.org/10.7554/eLife.30058

  40. Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72(4):595–605. 0092-8674(93)90078-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  41. Cost GJ, Feng Q, Jacquier A, Boeke JD (2002) Human L1 element target-primed reverse transcription in vitro. EMBO J 21(21):5899–5910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Flasch DA, Macia A, Sanchez L, Ljungman M, Heras SR, Garcia-Perez JL, Wilson TE, Moran JV (2019) Genome-wide de novo L1 retrotransposition connects endonuclease activity with replication. Cell 177(4):837–851 e828. https://doi.org/10.1016/j.cell.2019.02.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jurka J (1997) Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci U S A 94(5):1872–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Monot C, Kuciak M, Viollet S, Mir AA, Gabus C, Darlix JL, Cristofari G (2013) The specificity and flexibility of l1 reverse transcription priming at imperfect T-tracts. PLoS Genet 9(5):e1003499. https://doi.org/10.1371/journal.pgen.1003499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Benitez-Guijarro M, Lopez-Ruiz C, Tarnauskaite Z, Murina O, Mian Mohammad M, Williams TC, Fluteau A, Sanchez L, Vilar-Astasio R, Garcia-Canadas M, Cano D, Kempen MH, Sanchez-Pozo A, Heras SR, Jackson AP, Reijns MA, Garcia-Perez JL (2018) RNase H2, mutated in Aicardi-Goutieres syndrome, promotes LINE-1 retrotransposition. EMBO J 37(15). https://doi.org/10.15252/embj.201798506

  46. Bibillo A, Eickbush TH (2002) High processivity of the reverse transcriptase from a non-long terminal repeat retrotransposon. J Biol Chem 277(38):34836–34845. https://doi.org/10.1074/jbc.M204345200

    Article  CAS  PubMed  Google Scholar 

  47. Coufal NG, Garcia-Perez JL, Peng GE, Marchetto MC, Muotri AR, Mu Y, Carson CT, Macia A, Moran JV, Gage FH (2011) Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc Natl Acad Sci U S A 108(51):20382–20387. https://doi.org/10.1073/pnas.1100273108

    Article  PubMed  PubMed Central  Google Scholar 

  48. Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3(5):370–379. https://doi.org/10.1038/nrg798

    Article  CAS  PubMed  Google Scholar 

  49. Ostertag EM, Goodier JL, Zhang Y, Kazazian HH Jr (2003) SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet 73(6):1444–1451. https://doi.org/10.1086/380207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ewing AD, Ballinger TJ, Earl D, Broad Institute Genome S, Analysis P, Platform, Harris CC, Ding L, Wilson RK, Haussler D (2013) Retrotransposition of gene transcripts leads to structural variation in mammalian genomes. Genome Biol 14(3):R22. https://doi.org/10.1186/gb-2013-14-3-r22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ade C, Roy-Engel AM (2016) SINE retrotransposition: evaluation of Alu activity and recovery of de novo inserts. Methods Mol Biol 1400:183–201. https://doi.org/10.1007/978-1-4939-3372-3_13

    Article  PubMed  Google Scholar 

  52. Doucet AJ, Wilusz JE, Miyoshi T, Liu Y, Moran JV (2015) A 3' poly(A) tract is required for LINE-1 retrotransposition. Mol Cell 60(5):728–741. https://doi.org/10.1016/j.molcel.2015.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35(1):41–48

    Article  CAS  PubMed  Google Scholar 

  54. Dewannieux M, Heidmann T (2005) Role of poly(A) tail length in Alu retrotransposition. Genomics 86(3):378–381. https://doi.org/10.1016/j.ygeno.2005.05.009. S0888-7543(05)00151-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  55. Ahl V, Keller H, Schmidt S, Weichenrieder O (2015) Retrotransposition and crystal structure of an Alu RNP in the ribosome-stalling conformation. Mol Cell 60(5):715–727. https://doi.org/10.1016/j.molcel.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  56. Sultana T, van Essen D, Siol O, Bailly-Bechet M, Philippe C, Zine El Aabidine A, Pioger L, Nigumann P, Saccani S, Andrau JC, Gilbert N, Cristofari G (2019) The landscape of L1 retrotransposons in the human genome is shaped by pre-insertion sequence biases and post-insertion selection. Mol Cell 74(3):555–570 e557. https://doi.org/10.1016/j.molcel.2019.02.036

    Article  CAS  PubMed  Google Scholar 

  57. Hancks DC, Kazazian HH Jr (2016) Roles for retrotransposon insertions in human disease. Mob DNA 7:9. https://doi.org/10.1186/s13100-016-0065-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Richardson SR, Faulkner GJ (2018) Heritable L1 retrotransposition events during development: understanding their origins: examination of heritable, endogenous L1 retrotransposition in mice opens up exciting new questions and research directions. BioEssays 40(6):e1700189. https://doi.org/10.1002/bies.201700189

    Article  PubMed  Google Scholar 

  59. Schumann GG, Fuchs NV, Tristan-Ramos P, Sebe A, Ivics Z, Heras SR (2019) The impact of transposable element activity on therapeutically relevant human stem cells. Mob DNA 10:9. https://doi.org/10.1186/s13100-019-0151-x

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chen J, Rattner A, Nathans J (2006) Effects of L1 retrotransposon insertion on transcript processing, localization and accumulation: lessons from the retinal degeneration 7 mouse and implications for the genomic ecology of L1 elements. Hum Mol Genet 15(13):2146–2156. https://doi.org/10.1093/hmg/ddl138

    Article  CAS  PubMed  Google Scholar 

  61. Ostertag EM, Kazazian HH Jr (2001) Biology of mammalian L1 retrotransposons. Annu Rev Genet 35:501–538. https://doi.org/10.1146/annurev.genet.35.102401.091032. 35/1/501 [pii]

    Article  CAS  PubMed  Google Scholar 

  62. Richardson SR, Gerdes P, Gerhardt DJ, Sanchez-Luque FJ, Bodea GO, Munoz-Lopez M, Jesuadian JS, Kempen MHC, Carreira PE, Jeddeloh JA, Garcia-Perez JL, Kazazian HH Jr, Ewing AD, Faulkner GJ (2017) Heritable L1 retrotransposition in the mouse primordial germline and early embryo. Genome Res 27(8):1395–1405. https://doi.org/10.1101/gr.219022.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kano H, Godoy I, Courtney C, Vetter MR, Gerton GL, Ostertag EM, Kazazian HH Jr (2009) L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev 23(11):1303–1312. https://doi.org/10.1101/gad.1803909. 23/11/1303 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. van den Hurk JA, Meij IC, Seleme MC, Kano H, Nikopoulos K, Hoefsloot LH, Sistermans EA, de Wijs IJ, Mukhopadhyay A, Plomp AS, de Jong PT, Kazazian HH, Cremers FP (2007) L1 retrotransposition can occur early in human embryonic development. Hum Mol Genet 16(13):1587–1592. https://doi.org/10.1093/hmg/ddm108

    Article  CAS  PubMed  Google Scholar 

  65. Garcia-Perez JL, Marchetto MC, Muotri AR, Coufal NG, Gage FH, O’Shea KS, Moran JV (2007) LINE-1 retrotransposition in human embryonic stem cells. Hum Mol Genet 16(13):1569–1577. https://doi.org/10.1093/hmg/ddm105. ddm105 [pii]

    Article  CAS  PubMed  Google Scholar 

  66. Freeman P, Macfarlane C, Collier P, Jeffreys AJ, Badge RM (2011) L1 hybridization enrichment: a method for directly accessing de novo L1 insertions in the human germline. Hum Mutat 32(8):978–988. https://doi.org/10.1002/humu.21533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Feusier J, Watkins WS, Thomas J, Farrell A, Witherspoon DJ, Baird L, Ha H, Xing J, Jorde LB (2019) Pedigree-based estimation of human mobile element retrotransposition rates. Genome Res 29(10):1567–1577. https://doi.org/10.1101/gr.247965.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Faulkner GJ, Billon V (2018) L1 retrotransposition in the soma: a field jumping ahead. Mob DNA 9:22. https://doi.org/10.1186/s13100-018-0128-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Faulkner GJ, Garcia-Perez JL (2017) L1 mosaicism in mammals: extent, effects, and evolution. Trends Genet 33(11):802–816. https://doi.org/10.1016/j.tig.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  70. Pizarro JG, Cristofari G (2016) Post-transcriptional control of LINE-1 retrotransposition by cellular host factors in somatic cells. Front Cell Dev Biol 4:14. https://doi.org/10.3389/fcell.2016.00014

    Article  PubMed  PubMed Central  Google Scholar 

  71. Heidmann T, Heidmann O, Nicolas JF (1988) An indicator gene to demonstrate intracellular transposition of defective retroviruses. Proc Natl Acad Sci U S A 85(7):2219–2223. https://doi.org/10.1073/pnas.85.7.2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Curcio MJ, Garfinkel DJ (1991) Single-step selection for Ty1 element retrotransposition. Proc Natl Acad Sci U S A 88(3):936–940. https://doi.org/10.1073/pnas.88.3.936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Boeke JD, Garfinkel DJ, Styles CA, Fink GR (1985) Ty elements transpose through an RNA intermediate. Cell 40(3):491–500. 0092-8674(85)90197-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  74. Rangwala SH, Kazazian HH Jr (2009) The L1 retrotransposition assay: a retrospective and toolkit. Methods 49(3):219–226. https://doi.org/10.1016/j.ymeth.2009.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tristan-Ramos P, Morell S, Sanchez L, Toledo B, Garcia-Perez JL, Heras SR (2020) sRNA/L1 retrotransposition: using siRNAs and miRNAs to expand the applications of the cell culture-based LINE-1 retrotransposition assay. Philos Trans R Soc Lond Ser B Biol Sci 375(1795):20190346. https://doi.org/10.1098/rstb.2019.0346

    Article  CAS  Google Scholar 

  76. Moran JV (1999) Human L1 retrotransposition: insights and peculiarities learned from a cultured cell retrotransposition assay. Genetica 107(1–3):39–51

    Article  CAS  PubMed  Google Scholar 

  77. Kopera HC, Larson PA, Moldovan JB, Richardson SR, Liu Y, Moran JV (2016) LINE-1 cultured cell retrotransposition assay. Methods Mol Biol 1400:139–156. https://doi.org/10.1007/978-1-4939-3372-3_10

    Article  PubMed  PubMed Central  Google Scholar 

  78. Freeman JD, Goodchild NL, Mager DL (1994) A modified indicator gene for selection of retrotransposition events in mammalian cells. BioTechniques 17(1):46, 48–49, 52

    CAS  PubMed  Google Scholar 

  79. Goodier JL, Zhang L, Vetter MR, Kazazian HH Jr (2007) LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex. Mol Cell Biol 27(18):6469–6483. https://doi.org/10.1128/MCB.00332-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Morrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD, Taccioli GE, Batzer MA, Moran JV (2002) DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31(2):159–165. https://doi.org/10.1038/ng898. ng898 [pii]

    Article  CAS  PubMed  Google Scholar 

  81. Ostertag EM, Prak ET, DeBerardinis RJ, Moran JV, Kazazian HH Jr (2000) Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res 28(6):1418–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ostertag EM, DeBerardinis RJ, Goodier JL, Zhang Y, Yang N, Gerton GL, Kazazian HH Jr (2002) A mouse model of human L1 retrotransposition. Nat Genet 32(4):655–660. https://doi.org/10.1038/ng1022

    Article  CAS  PubMed  Google Scholar 

  83. Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435(7044):903–910. https://doi.org/10.1038/nature03663

    Article  CAS  PubMed  Google Scholar 

  84. Athanikar JN, Morrish TA, Moran JV (2002) Of man in mice. Nat Genet 32(4):562–563. https://doi.org/10.1038/ng1043

    Article  CAS  PubMed  Google Scholar 

  85. Prak ET, Dodson AW, Farkash EA, Kazazian HH Jr (2003) Tracking an embryonic L1 retrotransposition event. Proc Natl Acad Sci U S A 100(4):1832–1837. https://doi.org/10.1073/pnas.0337627100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xie Y, Rosser JM, Thompson TL, Boeke JD, An W (2011) Characterization of L1 retrotransposition with high-throughput dual-luciferase assays. Nucleic Acids Res 39(3):e16. https://doi.org/10.1093/nar/gkq1076

    Article  CAS  PubMed  Google Scholar 

  87. Garcia-Perez JL, Morell M, Scheys JO, Kulpa DA, Morell S, Carter CC, Hammer GD, Collins KL, O’Shea KS, Menendez P, Moran JV (2010) Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 466(7307):769–773. https://doi.org/10.1038/nature09209. nature09209 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Del Re B, Marcantonio P, Capri M, Giorgi G (2010) Evaluation of LINE-1 mobility in neuroblastoma cells by in vitro retrotransposition reporter assay: FACS analysis can detect only the tip of the iceberg of the inserted L1 elements. Exp Cell Res 316(20):3358–3367. https://doi.org/10.1016/j.yexcr.2010.06.024

    Article  CAS  PubMed  Google Scholar 

  89. Esnault C, Casella JF, Heidmann T (2002) A Tetrahymena thermophila ribozyme-based indicator gene to detect transposition of marked retroelements in mammalian cells. Nucleic Acids Res 30(11):e49. https://doi.org/10.1093/nar/30.11.e49

    Article  PubMed  PubMed Central  Google Scholar 

  90. Dewannieux M, Heidmann T (2005) L1-mediated retrotransposition of murine B1 and B2 SINEs recapitulated in cultured cells. J Mol Biol 349(2):241–247. https://doi.org/10.1016/j.jmb.2005.03.068

    Article  CAS  PubMed  Google Scholar 

  91. Morrish TA, Garcia-Perez JL, Stamato TD, Taccioli GE, Sekiguchi J, Moran JV (2007) Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres. Nature 446(7132):208–212. https://doi.org/10.1038/nature05560. nature05560 [pii]

    Article  CAS  PubMed  Google Scholar 

  92. Wissing S, Munoz-Lopez M, Macia A, Yang Z, Montano M, Collins W, Garcia-Perez JL, Moran JV, Greene WC (2012) Reprogramming somatic cells into iPS cells activates LINE-1 retroelement mobility. Hum Mol Genet 21(1):208–218. https://doi.org/10.1093/hmg/ddr455

    Article  CAS  PubMed  Google Scholar 

  93. MacLennan M, Garcia-Canadas M, Reichmann J, Khazina E, Wagner G, Playfoot CJ, Salvador-Palomeque C, Mann AR, Peressini P, Sanchez L, Dobie K, Read D, Hung CC, Eskeland R, Meehan RR, Weichenrieder O, Garcia-Perez JL, Adams IR (2017) Mobilization of LINE-1 retrotransposons is restricted by Tex19.1 in mouse embryonic stem cells. elife 6. https://doi.org/10.7554/eLife.26152

  94. Klawitter S, Fuchs NV, Upton KR, Munoz-Lopez M, Shukla R, Wang J, Garcia-Canadas M, Lopez-Ruiz C, Gerhardt DJ, Sebe A, Grabundzija I, Merkert S, Gerdes P, Pulgarin JA, Bock A, Held U, Witthuhn A, Haase A, Sarkadi B, Lower J, Wolvetang EJ, Martin U, Ivics Z, Izsvak Z, Garcia-Perez JL, Faulkner GJ, Schumann GG (2016) Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. Nat Commun 7:10286. https://doi.org/10.1038/ncomms10286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Klawitter S, Fuchs NV, Upton KR, Munoz-Lopez M, Shukla R, Wang J, Garcia-Canadas M, Lopez-Ruiz C, Gerhardt DJ, Sebe A, Grabundzija I, Merkert S, Gerdes P, Pulgarin JA, Bock A, Held U, Witthuhn A, Haase A, Sarkadi B, Lower J, Wolvetang EJ, Martin U, Ivics Z, Izsvak Z, Garcia-Perez JL, Faulkner GJ, Schumann GG (2018) Author correction: Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. Nat Commun 9(1):5398. https://doi.org/10.1038/s41467-018-07917-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Muñoz-Lopez M, Vilar R, Philippe C, Rahbari R, Richardson SR, Andres-Anton M, Widmann T, Cano D, Cortes JL, Rubio-Roldan A, Guichard E, Heras SR, Sanchez-Luque FJ, Morell M, Aguilar E, Garcia-Cañadas M, Sanchez L, Macia A, Vilches P, Nieto-Perez MC, Gomez-Martin A, Gonzalez-Alzaga B, Aguilar-Garduno C, Ewing AD, Lacasana M, Alvarez IS, Badge R, Faulkner GJ, Cristofari G, Garcia-Perez JL (2019) LINE-1 retrotransposition impacts the genome of human pre-implantation embryos and extraembryonic tissues. bioRxiv:522623. https://doi.org/10.1101/522623

  97. Quinlan AR, Boland MJ, Leibowitz ML, Shumilina S, Pehrson SM, Baldwin KK, Hall IM (2011) Genome sequencing of mouse induced pluripotent stem cells reveals retroelement stability and infrequent DNA rearrangement during reprogramming. Cell Stem Cell 9(4):366–373. https://doi.org/10.1016/j.stem.2011.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang J, Xie G, Singh M, Ghanbarian AT, Rasko T, Szvetnik A, Cai H, Besser D, Prigione A, Fuchs NV, Schumann GG, Chen W, Lorincz MC, Ivics Z, Hurst LD, Izsvak Z (2014) Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516(7531):405–409. https://doi.org/10.1038/nature13804

    Article  CAS  PubMed  Google Scholar 

  99. Hackett JA, Kobayashi T, Dietmann S, Surani MA (2017) Activation of lineage regulators and transposable elements across a pluripotent spectrum. Stem Cell Rep 8(6):1645–1658. https://doi.org/10.1016/j.stemcr.2017.05.014

    Article  CAS  Google Scholar 

  100. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523. https://doi.org/10.1038/nature06968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Canham MA, Sharov AA, Ko MS, Brickman JM (2010) Functional heterogeneity of embryonic stem cells revealed through translational amplification of an early endodermal transcript. PLoS Biol 8(5):e1000379. https://doi.org/10.1371/journal.pbio.1000379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Morgani SM, Canham MA, Nichols J, Sharov AA, Migueles RP, Ko MS, Brickman JM (2013) Totipotent embryonic stem cells arise in ground-state culture conditions. Cell Rep 3(6):1945–1957. https://doi.org/10.1016/j.celrep.2013.04.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24(2):185–187. https://doi.org/10.1038/nbt1177

    Article  CAS  PubMed  Google Scholar 

  104. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8(5):424–429. https://doi.org/10.1038/nmeth.1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cornacchia D, Zhang C, Zimmer B, Chung SY, Fan Y, Soliman MA, Tchieu J, Chambers SM, Shah H, Paull D, Konrad C, Vincendeau M, Noggle SA, Manfredi G, Finley LWS, Cross JR, Betel D, Studer L (2019) Lipid deprivation induces a stable, naive-to-primed intermediate state of pluripotency in human PSCs. Cell Stem Cell 25(1):120–136 e110. https://doi.org/10.1016/j.stem.2019.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147. https://doi.org/10.1126/science.282.5391.1145

    Article  CAS  PubMed  Google Scholar 

  107. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681–686. https://doi.org/10.1038/nbt1310

    Article  CAS  PubMed  Google Scholar 

  108. Kioussi C (2020) Culturing and manipulating mouse embryonic stem cells. Methods Mol Biol 2155:1–9. https://doi.org/10.1007/978-1-0716-0655-1_1

    Article  CAS  PubMed  Google Scholar 

  109. Han JS, Boeke JD (2004) A highly active synthetic mammalian retrotransposon. Nature 429(6989):314–318

    Article  CAS  PubMed  Google Scholar 

  110. Takahara T, Ohsumi T, Kuromitsu J, Shibata K, Sasaki N, Okazaki Y, Shibata H, Sato S, Yoshiki A, Kusakabe M, Muramatsu M, Ueki M, Okuda K, Hayashizaki Y (1996) Dysfunction of the Orleans reeler gene arising from exon skipping due to transposition of a full-length copy of an active L1 sequence into the skipped exon. Hum Mol Genet 5(7):989–993. https://doi.org/10.1093/hmg/5.7.989

    Article  CAS  PubMed  Google Scholar 

  111. Wallace MR, Andersen LB, Saulino AM, Gregory PE, Glover TW, Collins FS (1991) A de novo Alu insertion results in neurofibromatosis type 1. Nature 353(6347):864–866. https://doi.org/10.1038/353864a0

    Article  CAS  PubMed  Google Scholar 

  112. Gilbert N, Bomar JM, Burmeister M, Moran JV (2004) Characterization of a mutagenic B1 retrotransposon insertion in the jittery mouse. Hum Mutat 24(1):9–13. https://doi.org/10.1002/humu.20060

    Article  CAS  PubMed  Google Scholar 

  113. Villa-Diaz LG, Garcia-Perez JL, Krebsbach PH (2010) Enhanced transfection efficiency of human embryonic stem cells by the incorporation of DNA liposomes in extracellular matrix. Stem Cells Dev 19(12):1949–1957. https://doi.org/10.1089/scd.2009.0505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Brouha B, Meischl C, Ostertag E, de Boer M, Zhang Y, Neijens H, Roos D, Kazazian HH Jr (2002) Evidence consistent with human L1 retrotransposition in maternal meiosis I. Am J Hum Genet 71(2):327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, DeBerardinis RJ, Gabriel A, Swergold GD, Kazazian HH Jr (1997) Many human L1 elements are capable of retrotransposition. Nat Genet 16(1):37–43

    Article  CAS  PubMed  Google Scholar 

  116. Wei W, Morrish TA, Alisch RS, Moran JV (2000) A transient assay reveals that cultured human cells can accommodate multiple LINE-1 retrotransposition events. Anal Biochem 284(2):435–438

    Article  CAS  PubMed  Google Scholar 

  117. Kopera HC, Moldovan JB, Morrish TA, Garcia-Perez JL, Moran JV (2011) Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase. Proc Natl Acad Sci U S A 108(51):20345–20350. https://doi.org/10.1073/pnas.1100275108

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kimberland ML, Divoky V, Prchal J, Schwahn U, Berger W, Kazazian HH Jr (1999) Full-length human L1 insertions retain the capacity for high frequency retrotransposition in cultured cells. Hum Mol Genet 8(8):1557–1560

    Article  CAS  PubMed  Google Scholar 

  119. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108(2):193–199. https://doi.org/10.1016/0378-1119(91)90434-d

    Article  CAS  PubMed  Google Scholar 

  120. Miyazaki J, Takaki S, Araki K, Tashiro F, Tominaga A, Takatsu K, Yamamura K (1989) Expression vector system based on the chicken beta-actin promoter directs efficient production of interleukin-5. Gene 79(2):269–277. https://doi.org/10.1016/0378-1119(89)90209-6

    Article  CAS  PubMed  Google Scholar 

  121. Richardson SR, Narvaiza I, Planegger RA, Weitzman MD, Moran JV (2014) APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition. elife 3:e02008

    Article  PubMed  PubMed Central  Google Scholar 

  122. Macia A, Munoz-Lopez M, Cortes JL, Hastings RK, Morell S, Lucena-Aguilar G, Marchal JA, Badge RM, Garcia-Perez JL (2011) Epigenetic control of retrotransposon expression in human embryonic stem cells. Mol Cell Biol 31(2):300–316. https://doi.org/10.1128/MCB.00561-10. MCB.00561-10 [pii]

    Article  CAS  PubMed  Google Scholar 

  123. Wallace N, Wagstaff BJ, Deininger PL, Roy-Engel AM (2008) LINE-1 ORF1 protein enhances Alu SINE retrotransposition. Gene 419(1–2):1–6. https://doi.org/10.1016/j.gene.2008.04.007. S0378-1119(08)00166-2 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bennett EA, Keller H, Mills RE, Schmidt S, Moran JV, Weichenrieder O, Devine SE (2008) Active Alu retrotransposons in the human genome. Genome Res 18(12):1875–1883. https://doi.org/10.1101/gr.081737.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bao W, Jurka J (2010) Origin and evolution of LINE-1 derived “half-L1” retrotransposons (HAL1). Gene 465(1–2):9–16. https://doi.org/10.1016/j.gene.2010.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zeng X, Miura T, Luo Y, Bhattacharya B, Condie B, Chen J, Ginis I, Lyons I, Mejido J, Puri RK, Rao MS, Freed WJ (2004) Properties of pluripotent human embryonic stem cells BG01 and BG02. Stem Cells 22(3):292–312. https://doi.org/10.1634/stemcells.22-3-292

    Article  CAS  PubMed  Google Scholar 

  127. Chen G, Hou Z, Gulbranson DR, Thomson JA (2010) Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells. Cell Stem Cell 7(2):240–248. https://doi.org/10.1016/j.stem.2010.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

M.G.-C. acknowledges the support of Fundación Pública Andaluza “Progreso y Salud,” Seville, Spain. F.J.S.-L. acknowledges the support of an EMERGIA20_00225 Grant from the Council of Economy, Knowledge, Enterprises, and University of the Andalusian Government (Spain). J.L.G.P.’s lab is supported by MINECO-FEDER [SAF2017-89745-R], CTEICU-PAIDI_2020-FEDER [P18-RT-5067] and by a private donation from Ms. Francisca Serrano (Trading y Bolsa para Torpes, Granada, Spain).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marta Garcia-Cañadas or Jose L. Garcia Perez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Garcia-Cañadas, M., Sanchez-Luque, F.J., Sanchez, L., Rojas, J., Garcia Perez, J.L. (2023). LINE-1 Retrotransposition Assays in Embryonic Stem Cells. In: Branco, M.R., de Mendoza Soler, A. (eds) Transposable Elements. Methods in Molecular Biology, vol 2607. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2883-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2883-6_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2882-9

  • Online ISBN: 978-1-0716-2883-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics