Skip to main content

Light Microscopy Technologies and the Plant Cytoskeleton

  • Protocol
  • First Online:
The Plant Cytoskeleton

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2604))

Abstract

The cytoskeleton is a dynamic and diverse subcellular filament network, and as such microscopy is an essential technology to enable researchers to study and characterize these systems. Microscopy has a long history of observing the plant world not least as the subject where Robert Hooke coined the term “cell” in his publication Micrographia. From early observations of plant morphology to today’s advanced super-resolution technologies, light microscopy is the indispensable tool for the plant cell biologist. In this mini review, we will discuss some of the major modalities used to examine the plant cytoskeleton and the theory behind them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chan J, Calder G, Fox S, Lloyd C (2007) Cortical microtubule arrays undergo rotary movements in Arabidopsis hypocotyl epidermal cells. Nat Cell Biol 9(2):171–175. https://doi.org/10.1038/ncb1533

    Article  CAS  Google Scholar 

  2. Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MG, Leonhardt H, Sedat JW (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881):1332–1336. https://doi.org/10.1126/science.1156947

    Article  CAS  Google Scholar 

  3. Hein B, Willig KI, Hell SW (2008) Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc Natl Acad Sci U S A 105(38):14271–14276. https://doi.org/10.1073/pnas.0807705105

    Article  Google Scholar 

  4. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795. https://doi.org/10.1038/nmeth929

    Article  CAS  Google Scholar 

  5. Azuma T, Kei T (2015) Super-resolution spinning-disk confocal microscopy using optical photon reassignment. Opt Express 23(11):15003–15011. https://doi.org/10.1364/OE.23.015003

    Article  CAS  Google Scholar 

  6. Gustafsson N, Culley S, Ashdown G, Owen DM, Pereira PM, Henriques R (2016) Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat Commun 7:12471. https://doi.org/10.1038/ncomms12471

    Article  CAS  Google Scholar 

  7. Fitzgibbon J, Bell K, King E, Oparka K (2010) Super-resolution imaging of plasmodesmata using three-dimensional structured illumination microscopy. Plant Physiol 153(4):1453–1463. https://doi.org/10.1104/pp.110.157941

    Article  CAS  Google Scholar 

  8. Knox K, Wang P, Kriechbaumer V, Tilsner J, Frigerio L, Sparkes I, Hawes C, Oparka K (2015) Putting the squeeze on plasmodesmata: a role for reticulons in primary plasmodesmata formation. Plant Physiol 168(4):1563–1572. https://doi.org/10.1104/pp.15.00668

    Article  CAS  Google Scholar 

  9. Tilsner J, Linnik O, Louveaux M, Roberts IM, Chapman SN, Oparka KJ (2013) Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. J Cell Biol 201(7):981–995. https://doi.org/10.1083/jcb.201304003

    Article  CAS  Google Scholar 

  10. Linnik O, Liesche J, Tilsner J, Oparka KJ (2013) Unraveling the structure of viral replication complexes at super-resolution. Front Plant Sci 4:6. https://doi.org/10.3389/fpls.2013.00006

    Article  Google Scholar 

  11. Komis G, Samajova O, Ovecka M, Samaj J (2015) Super-resolution microscopy in plant cell imaging. Trends Plant Sci 20(12):834–843. https://doi.org/10.1016/j.tplants.2015.08.013

    Article  CAS  Google Scholar 

  12. Komis G, Novak D, Ovecka M, Samajova O, Samaj J (2018) Advances in imaging plant cell dynamics. Plant Physiol 176(1):80–93. https://doi.org/10.1104/pp.17.00962

    Article  CAS  Google Scholar 

  13. Vavrdova T, Krenek P, Ovecka M, Samajova O, Flokova P, Illesova P, Snaurova R, Samaj J, Komis G (2020) Complementary superresolution visualization of composite plant microtubule organization and dynamics. Front Plant Sci 11:693. https://doi.org/10.3389/fpls.2020.00693

    Article  Google Scholar 

  14. Schubert V, Neumann P, Marques A, Heckmann S, Macas J, Pedrosa-Harand A, Schubert I, Jang TS, Houben A (2020) Super-resolution microscopy reveals diversity of plant centromere architecture. Int J Mol Sci 21(10). https://doi.org/10.3390/ijms21103488

  15. Duncombe SG, Chethan SG, Anderson CT (2022) Super-resolution imaging illuminates new dynamic behaviors of cellulose synthase. Plant Cell 34(1):273–286. https://doi.org/10.1093/plcell/koab227

    Article  Google Scholar 

  16. Durst S, Hedde PN, Brochhausen L, Nick P, Nienhaus GU, Maisch J (2014) Organization of perinuclear actin in live tobacco cells observed by PALM with optical sectioning. J Plant Physiol 171(2):97–108. https://doi.org/10.1016/j.jplph.2013.10.007

    Article  CAS  Google Scholar 

  17. Liesche JZ, Schulz, A. Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells. BMC Plant Biol 13:226

    Google Scholar 

  18. Dong B, Yang X, Zhu S, Bassham DC, Fang N (2015) Stochastic optical reconstruction microscopy imaging of microtubule arrays in intact arabidopsis thaliana seedling roots. Sci Rep 5:15694. https://doi.org/10.1038/srep15694

    Article  CAS  Google Scholar 

  19. Schubert V, Weisshart K (2015) Abundance and distribution of RNA polymerase II in Arabidopsis interphase nuclei. J Exp Bot 66(6):1687–1698. https://doi.org/10.1093/jxb/erv091

    Article  CAS  Google Scholar 

  20. Kleine-Vehn J, Wabnik K, Martiniere A, Langowski L, Willig K, Naramoto S, Leitner J, Tanaka H, Jakobs S, Robert S, Luschnig C, Govaerts W, Hell SW, Runions J, Friml J (2011) Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Mol Syst Biol 7:540. https://doi.org/10.1038/msb.2011.72

    Article  CAS  Google Scholar 

  21. Kurzbauer MT, Janisiw MP, Paulin LF, Prusen Mota I, Tomanov K, Krsicka O, Haeseler AV, Schubert V, Schlogelhofer P (2021) ATM controls meiotic DNA double-strand break formation and recombination and affects synaptonemal complex organization in plants. Plant Cell 33(5):1633–1656. https://doi.org/10.1093/plcell/koab045

    Article  Google Scholar 

  22. Rego EH, Shao L (2015) Practical structured illumination microscopy. Methods Mol Biol 1251:175–192. https://doi.org/10.1007/978-1-4939-2080-8_10

    Article  CAS  Google Scholar 

  23. Ticha M, Richter H, Ovecka M, Maghelli N, Hrbackova M, Dvorak P, Samaj J, Samajova O (2020) Advanced microscopy reveals complex developmental and subcellular localization patterns of ANNEXIN 1 in arabidopsis. Front Plant Sci 11:1153. https://doi.org/10.3389/fpls.2020.01153

    Article  Google Scholar 

  24. Vyplelova P, Ovecka M, Komis G, Samaj J (2018) Advanced microscopy methods for bioimaging of mitotic microtubules in plants. Methods Cell Biol 145:129–158. https://doi.org/10.1016/bs.mcb.2018.03.019

    Article  CAS  Google Scholar 

  25. McKenna JF, Rolfe DJ, Webb SED, Tolmie AF, Botchway SW, Martin-Fernandez ML, Hawes C, Runions J (2019) The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis. Proc Natl Acad Sci U S A 116(26):12857–12862. https://doi.org/10.1073/pnas.1819077116

    Article  CAS  Google Scholar 

  26. Liang P, Stratil TF, Popp C, Marin M, Folgmann J, Mysore KS, Wen J, Ott T (2018) Symbiotic root infections in Medicago truncatula require remorin-mediated receptor stabilization in membrane nanodomains. Proc Natl Acad Sci U S A 115(20):5289–5294. https://doi.org/10.1073/pnas.1721868115

    Article  CAS  Google Scholar 

  27. Romero IC, Kong S, Fowlkes CC, Jaramillo C, Urban MA, Oboh-Ikuenobe F, D’Apolito C, Punyasena SW (2020) Improving the taxonomy of fossil pollen using convolutional neural networks and superresolution microscopy. Proc Natl Acad Sci U S A 117(45):28496–28505. https://doi.org/10.1073/pnas.2007324117

    Article  CAS  Google Scholar 

  28. Chen FT, Tillberg PW, Boyden ES (2015) Expansion microscopy. Science 347(6221):543–548

    Article  CAS  Google Scholar 

  29. Ovecka M, Sojka J, Ticha M, Komis G, Basheer J, Marchetti C, Samajova O, Kubenova L, Samaj J (2022) Imaging plant cells and organs with light-sheet and super-resolution microscopy. Plant Physiol 188(2):683–702. https://doi.org/10.1093/plphys/kiab349

    Article  CAS  Google Scholar 

  30. Ovecka M, von Wangenheim D, Tomancak P, Samajova O, Komis G, Samaj J (2018) Multiscale imaging of plant development by light-sheet fluorescence microscopy. Nat Plants 4(9):639–650. https://doi.org/10.1038/s41477-018-0238-2

    Article  Google Scholar 

  31. O’Callaghan FE, Braga RA, Neilson R, MacFarlane SA, Dupuy LX (2018) New live screening of plant-nematode interactions in the rhizosphere. Sci Rep 8(1):1440. https://doi.org/10.1038/s41598-017-18797-7

    Article  CAS  Google Scholar 

  32. Zhang T, Cieslak M, Owens A, Wang F, Broholm SK, Teeri TH, Elomaa P, Prusinkiewicz P (2021) Phyllotactic patterning of gerbera flower heads. Proc Natl Acad Sci U S A:118 (13). https://doi.org/10.1073/pnas.2016304118

  33. Capua Y, Eshed Y (2017) Coordination of auxin-triggered leaf initiation by tomato LEAFLESS. Proc Natl Acad Sci U S A 114(12):3246–3251. https://doi.org/10.1073/pnas.1617146114

    Article  CAS  Google Scholar 

  34. Ovecka M, Luptovciak I, Komis G, Samajova O, Samakovli D, Samaj J (2020) Spatiotemporal pattern of ectopic cell divisions contribute to mis-shaped phenotype of primary and lateral roots of katanin1 mutant. Front Plant Sci 11:734. https://doi.org/10.3389/fpls.2020.00734

    Article  Google Scholar 

  35. Vaskebova L, Samaj J, Ovecka M (2018) Single-point ACT2 gene mutation in the Arabidopsis root hair mutant der1-3 affects overall actin organization, root growth and plant development. Ann Bot 122(5):889–901. https://doi.org/10.1093/aob/mcx180

    Article  CAS  Google Scholar 

  36. Vyplelova P, Ovecka M, Samaj J (2017) Alfalfa root growth rate correlates with progression of microtubules during mitosis and cytokinesis as revealed by environmental light-sheet microscopy. Front Plant Sci 8:1870. https://doi.org/10.3389/fpls.2017.01870

    Article  Google Scholar 

  37. Wang X., et al (2006) Imaging of dynamic secretory vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy. Plant Physiol 141(4): 1591–603

    Google Scholar 

  38. Konopka CA, Bednarek SY (2008) Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex. Plant J 53(1):186–196. https://doi.org/10.1111/j.1365-313X.2007.03306.x

    Article  CAS  Google Scholar 

  39. Konopka CA, Backues SK, Bednarek SY (2008) Dynamics of Arabidopsis dynamin-related protein 1C and a clathrin light chain at the plasma membrane. Plant Cell 20(5):1363–1380. https://doi.org/10.1105/tpc.108.059428

    Article  CAS  Google Scholar 

  40. Khurana P, Henty JL, Huang S, Staiger AM, Blanchoin L, Staiger CJ (2010) Arabidopsis VILLIN1 and VILLIN3 have overlapping and distinct activities in actin bundle formation and turnover. Plant Cell 22(8):2727–2748. https://doi.org/10.1105/tpc.110.076240

    Article  CAS  Google Scholar 

  41. Smertenko AP, Deeks MJ, Hussey PJ (2010) Strategies of actin reorganisation in plant cells. J Cell Sci 123(Pt 17):3019–3028. https://doi.org/10.1242/jcs.071126

    Article  CAS  Google Scholar 

  42. Vizcay-Barrena G, Webb SE, Martin-Fernandez ML, Wilson ZA (2011) Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM). J Exp Bot 62(15):5419–5428. https://doi.org/10.1093/jxb/err212

    Article  CAS  Google Scholar 

  43. Sassmann S, Rodrigues C, Milne SW, Nenninger A, Allwood E, Littlejohn GR, Talbot NJ, Soeller C, Davies B, Hussey PJ, Deeks MJ (2018) An immune-responsive cytoskeletal-plasma membrane feedback loop in plants. Curr Biol 28(13):2136–2144 e2137. https://doi.org/10.1016/j.cub.2018.05.014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Hawkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hawkins, T.J. (2023). Light Microscopy Technologies and the Plant Cytoskeleton. In: Hussey, P.J., Wang, P. (eds) The Plant Cytoskeleton. Methods in Molecular Biology, vol 2604. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2867-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2867-6_28

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2866-9

  • Online ISBN: 978-1-0716-2867-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics