Skip to main content

Tracking Global and Local Changes in Membrane Fluidity Through Fluorescence Spectroscopy and Microscopy

  • Protocol
  • First Online:
Antibiotics

Abstract

Membrane fluidity is a critical parameter of cellular membranes, which cells continuously strive to maintain within a viable range. Interference with the correct membrane fluidity state can strongly inhibit cell function. Triggered changes in membrane fluidity and associated impacts on lipid domains have been postulated to contribute to the mechanism of action of membrane targeting antimicrobials, but the corresponding analyses have been hampered by the absence of readily available analytical tools. Here, we expand upon the protocols outlined in the first edition of this book, providing further and alternative protocols that can be used to measure changes in membrane fluidity. We provide detailed protocols, which allow straightforward in vivo and in vitro measurement of antibiotic compound-triggered changes in membrane fluidity and fluid membrane microdomains. Furthermore, we summarize useful strains constructed by us and others to characterize and confirm lipid specificity of membrane antimicrobials directly in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    Article  PubMed  CAS  Google Scholar 

  2. Zhang Y-M, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233

    Article  PubMed  Google Scholar 

  3. Gohrbandt M, Lipski A, Grimshaw JW, Buttress JA, Baig Z, Herkenhoff B, Walter S, Kurre R, Deckers-Hebestreit G, Strahl H (2022) Low membrane fluidity triggers lipid phase separation and protein segregation in living bacteria. EMBO J:e109800

    Google Scholar 

  4. Epand RM, Epand RF (2009) Domains in bacterial membranes and the action of antimicrobial agents. Mol Biol Syst 5:580–587

    CAS  Google Scholar 

  5. Mueller A, Wenzel M, Strahl H, Grein F, Saaki T, Kohl B, Siersma T, Bandow J, Sahl H, Schneider T, Hamoen L (2016) Daptomycin inhibits bacterial cell envelope synthesis by interfering with fluid membrane microdomains. Proc Natl Acad Sci U S A 113:E7077–E7086

    CAS  Google Scholar 

  6. Scheinpflug K, Wenzel M, Krylova O, Bandow JE, Dathe M, Strahl H (2017) Antimicrobial peptide cWFW kills by combining lipid phase separation with autolysis. Sci Rep 7:44332

    Article  PubMed  PubMed Central  Google Scholar 

  7. Saeloh D, Tipmanee V, Jim KK, Dekker MP, Bitter W, Voravuthikunchai SP, Wenzel M, Hamoen LW (2018) The novel antibiotic rhodomyrtone traps membrane proteins in vesicles with increased fluidity. PLoS Pathog 14:e1006876

    Article  PubMed  PubMed Central  Google Scholar 

  8. Scheinpflug K, Krylova O, Strahl H (2017) Measurement of cell membrane fluidity by Laurdan GP: fluorescence spectroscopy and microscopy. Methods Mol Biol 1520:159–174. Humana Press, New York

    Google Scholar 

  9. Parasassi T, De Stasio G, d’Ubaldo A, Gratton E (1990) Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J 57:1179–1186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Parasassi T, De Stasio G, Ravagnan G, Rusch RM, Gratton E (1991) Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J 60:179–189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wheeler G, Tyler KM (2011) Widefield microscopy for live imaging of lipid domains and membrane dynamics. Biochim Biophys Acta 1808:634–641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Strahl H, Burmann F, Hamoen LW (2014) The actin homologue MreB organizes the bacterial cell membrane. Nat Comm 5:3442

    Article  Google Scholar 

  13. Bach JN, Bramkamp M (2013) Flotillins functionally organize the bacterial membrane. Mol Microbiol 88:1205–1217

    Article  PubMed  CAS  Google Scholar 

  14. Kucherak OA, Oncul S, Darwich Z, Yushchenko DA, Arntz Y, Didier P, Mély Y, Klymchenko AS (2010) Switchable Nile Red-based probe for cholesterol and lipid order at the outer leaflet of biomembranes. J Am Chem Soc 132:4907–4916

    Article  PubMed  CAS  Google Scholar 

  15. Oswald F, Varadarajan A, Lill H, Peterman EJG, Bollen YJM (2016) MreB-dependent organization of the E. coli cytoplasmic membrane controls membrane protein diffusion. Biophys J 110:1139–1149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Omardien S, Drijfhout JW, Vaz FM, Wenzel M, Hamoen LW, Zaat SAJ, Brul S (2018) Bactericidal activity of amphipathic cationic antimicrobial peptides involves altering the membrane fluidity when interacting with the phospholipid bilayer. Biochim Biophys Acta 1860:2404–2415

    Article  CAS  Google Scholar 

  17. Wenzel M, Rautenbach M, Vosloo JA, Siersma T, Aisenbrey CHM, Zaitseva E, Laubscher WE, van Rensburg W, Behrends J, Bechinger B, Hamoen LW (2018) The multifaceted antibacterial mechanisms of the pioneering peptide antibiotics tyrocidine and gramicidin S. MBio 9:e00802–e00818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wenzel M, Dekker MP, Wang B, Burggraaf MJ, Bitter W, van Weering JRT, Hamoen LW (2021) A flat embedding method for transmission electron microscopy reveals an unknown mechanism of tetracycline. Commun Biol 4:306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wenzel M, Vischer NOE, Strahl H, Hamoen LW (2018) Assessing membrane fluidity and visualizing fluid membrane domains in bacteria using fluorescent membrane dyes. Bio-protocol 8:e3063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kawai F, Shoda M, Harashima R, Sadaie Y, Hara H, Matsumoto K (2004) Cardiolipin domains in Bacillus subtilis Marburg membranes. J Bacteriol 186:1475–1483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Salzberg LI, Helmann JD (2008) Phenotypic and transcriptomic characterization of Bacillus subtilis mutants with grossly altered membrane composition. J Bacteriol 190:7797–7807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Mercier R, Domínguez-Cuevas P, Errington J (2012) Crucial role for membrane fluidity in proliferation of primitive cells. Cell Rep 1:417–423

    Article  PubMed  CAS  Google Scholar 

  23. Chico DE, Given RL, Miller BT (2003) Binding of cationic cell-permeable peptides to plastic and glass. Peptides 24:3–9

    Article  PubMed  CAS  Google Scholar 

  24. New RRC (1990) Liposomes: a practical approach. IRL Press, Oxford

    Google Scholar 

  25. Strahl H, Hamoen LW (2010) Membrane potential is important for bacterial cell division. Proc Natl Acad Sci U S A 107:12281–12286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Newcastle University, Barbour Foundation, and the Swedish Research Council for Sustainable Development (Formas), grant number 2020-00956.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michaela Wenzel or Henrik Strahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Humphrey, M. et al. (2023). Tracking Global and Local Changes in Membrane Fluidity Through Fluorescence Spectroscopy and Microscopy. In: Sass, P. (eds) Antibiotics. Methods in Molecular Biology, vol 2601. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2855-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2855-3_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2854-6

  • Online ISBN: 978-1-0716-2855-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics