Skip to main content

Articular Cartilage Chondroprogenitors: Isolation and Directed Differentiation

  • Protocol
  • First Online:
Cartilage Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2598))

  • 1642 Accesses

Abstract

Experimental data suggests that tissue-specific progenitors are present within hyaline articular cartilage with the potential to contribute to growth, maintenance, and repair. In this chapter, we show how colony-forming progenitor-like cells can be isolated from bovine articular cartilage using differential adhesion to fibronectin. Furthermore, we describe the optimal conditions and factors required to differentiate these progenitor cells to produce hyaline articular cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hunziker EB (2009) The elusive path to cartilage regeneration. Adv Mater 21(32–33):3419–3424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30(1):215–224

    Article  CAS  PubMed  Google Scholar 

  3. Dell’Accio F, De Bari C, Luyten FP (2001) Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo. Arthritis Rheum 44(7):1608–1619

    Article  PubMed  Google Scholar 

  4. Passaretti D et al (2001) Cultured chondrocytes produce injectable tissue-engineered cartilage in hydrogel polymer. Tissue Eng 7(6):805–815

    Article  CAS  PubMed  Google Scholar 

  5. Dowthwaite GP et al (2004) The surface of articular cartilage contains a progenitor cell population. J Cell Sci 117(Pt 6):889–897

    Article  CAS  PubMed  Google Scholar 

  6. Alsalameh S et al (2004) Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 50(5):1522–1532

    Article  PubMed  Google Scholar 

  7. Li Y et al (2016) Intermittent hydrostatic pressure maintains and enhances the chondrogenic differentiation of cartilage progenitor cells cultivated in alginate beads. Develop Growth Differ 58(2):180–193

    Article  CAS  Google Scholar 

  8. McCarthy HE et al (2012) The comparison of equine articular cartilage progenitor cells and bone marrow-derived stromal cells as potential cell sources for cartilage repair in the horse. Vet J 192(3):345–351

    Article  CAS  PubMed  Google Scholar 

  9. Neumann AJ et al (2015) Human articular cartilage progenitor cells are responsive to mechanical stimulation and adenoviral-mediated overexpression of bone-morphogenetic protein 2. PLoS One 10(8):e0136229

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tong W et al (2015) In vivo identification and induction of articular cartilage stem cells by inhibiting NF-kappaB signaling in osteoarthritis. Stem Cells 33(10):3125–3137

    Article  CAS  PubMed  Google Scholar 

  11. Williams R et al (2010) Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One 5(10):e13246

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xue K et al (2015) Isolation and identification of stem cells in different subtype of cartilage tissue. Expert Opin Biol Ther 15(5):623–632

    Article  CAS  PubMed  Google Scholar 

  13. Shwartz Y et al (2016) Joint development involves a continuous influx of Gdf5-positive cells. Cell Rep 15(12):2577–2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rux D et al (2019) Joints in the appendicular skeleton: developmental mechanisms and evolutionary influences. Curr Top Dev Biol 133:119–151

    Article  CAS  PubMed  Google Scholar 

  15. Hunziker EB, Kapfinger E, Geiss J (2007) The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthr Cartil 15(4):403–413

    Article  CAS  Google Scholar 

  16. Decker RS et al (2017) Cell origin, volume and arrangement are drivers of articular cartilage formation, morphogenesis and response to injury in mouse limbs. Dev Biol 426(1):56–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wagner W et al (2001) Neonatal rat cartilage has the capacity for tissue regeneration. Wound Repair Regen 9(6):531–536

    Article  CAS  PubMed  Google Scholar 

  18. Ribitsch I et al (2018) Fetal articular cartilage regeneration versus adult fibrocartilaginous repair: secretome proteomics unravels molecular mechanisms in an ovine model. Dis Model Mech 11(7):dmm033092

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tew SR et al (2000) The reactions of articular cartilage to experimental wounding: role of apoptosis. Arthritis Rheum 43(1):215–225

    Article  CAS  PubMed  Google Scholar 

  20. Hayes AJ et al (2001) The development of articular cartilage: evidence for an appositional growth mechanism. Anat Embryol (Berl) 203(6):469–479

    Article  CAS  Google Scholar 

  21. Salter DM, Godolphin JL, Gourlay MS (1995) Chondrocyte heterogeneity: immunohistologically defined variation of integrin expression at different sites in human fetal knees. J Histochem Cytochem 43(4):447–457

    Article  CAS  PubMed  Google Scholar 

  22. Jones PH, Watt FM (1993) Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73(4):713–724

    Article  CAS  PubMed  Google Scholar 

  23. Khan IM et al (2009) Clonal chondroprogenitors maintain telomerase activity and Sox9 expression during extended monolayer culture and retain chondrogenic potential. Osteoarthr Cartil 17(4):518–528

    Article  CAS  Google Scholar 

  24. Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  25. Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  26. Khan IM et al (2011) Fibroblast growth factor 2 and transforming growth factor beta1 induce precocious maturation of articular cartilage. Arthritis Rheum 63(11):3417–3427

    Article  CAS  PubMed  Google Scholar 

  27. Morgan BJ et al (2020) Bone morphogenetic protein-9 is a potent chondrogenic and morphogenic factor for articular cartilage chondroprogenitors. Stem Cells Dev 29(14):882–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brown RA, ProQuest (2013) Extreme tissue engineering: concepts and strategies for tissue fabrication. Wiley, Hoboken. 1 online resource (270p)

    Google Scholar 

  29. Ramos-Ibeas P et al (2017) Pyruvate antioxidant roles in human fibroblasts and embryonic stem cells. Mol Cell Biochem 429(1–2):137–150

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas M. Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Khan, I.M., McKenna, J., Zhang, Y. (2023). Articular Cartilage Chondroprogenitors: Isolation and Directed Differentiation. In: Stoddart, M.J., Della Bella, E., Armiento, A.R. (eds) Cartilage Tissue Engineering. Methods in Molecular Biology, vol 2598. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2839-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2839-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2838-6

  • Online ISBN: 978-1-0716-2839-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics