Skip to main content

Labeling of Phospho-Specific Antibodies with oYo-Link® Epitope Tags for Multiplex Immunostaining

  • Protocol
  • First Online:
Signal Transduction Immunohistochemistry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2593))

  • 1145 Accesses

Abstract

Spatial proteomics has recently garnered significant interest, as it offers to provide unprecedented insight into biological processes in both health and disease, by connecting protein expression patterns from the subcellular level to the tissue or even organism level. These high-content approaches generally rely on a high degree of multiplexing, whereby multiple proteins can be detected simultaneously. The most versatile multiplexing approaches utilize antibodies to confer specificity for various intracellular proteins of interest. Therefore, these methods must be able to differentiate many antibodies at once. In this chapter, we describe a simple and rapid approach to labeling antibodies with distinct epitope tags in a site-specific manner. This allows multiple antibodies, even from the same host species, to be uniquely identified and detected and offers a simple approach for spatial proteomic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jin L, Wang W, Fang G (2014) Targeting protein-protein interaction by small molecules. Annu Rev Pharmacol Toxicol 54:435–456

    Article  CAS  Google Scholar 

  2. Blackstone C (2018) Converging cellular themes for the hereditary spastic paraplegias. Curr Opin Neurobiol 51:139–146

    Article  CAS  Google Scholar 

  3. Di Martino R, Sticco L, Luini A (2019) Regulation of cargo export and sorting at the trans-Golgi network. FEBS Lett 593(17):2306–2318

    Article  Google Scholar 

  4. Sleigh JN, Rossor AM, Fellows AD et al (2019) Axonal transport and neurological disease. Nat Rev Neurol 15(12):691–703

    Article  Google Scholar 

  5. Huang P, Kong Q, Gao W et al (2020) Spatial proteome profiling by immunohistochemistry-based laser capture microdissection and data-independent acquisition proteomics. Anal Chim Acta 1127:140–148

    Article  Google Scholar 

  6. Borner GHH (2020) Organellar maps through proteomic profiling – a conceptual guide. Mol Cell Proteomics 19(7):1076–1087

    Article  Google Scholar 

  7. Marx V (2015) Mapping proteins with spatial proteomics. Nat Methods 12(9):815–819

    Article  CAS  Google Scholar 

  8. Lundberg E, Borner GHH (2019) Spatial proteomics: a powerful discovery tool for cell biology. Nat Rev Mol Cell Biol 20(5):285–302

    Article  CAS  Google Scholar 

  9. Christopher JA, Geladaki A, Dawson CS et al (2021) Subcellular transcriptomics and proteomics: a comparative methods review. Mol Cell Proteomics 21(2):100186

    Article  Google Scholar 

  10. Thul PJ, Lindskog C (2018) The human protein atlas: a spatial map of the human proteome. Protein Sci 27(1):233–244

    Article  CAS  Google Scholar 

  11. Huh WK, Falvo JV, Gerke LC et al (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686–691

    Article  CAS  Google Scholar 

  12. Mackinder LCM, Chen C, Leib RD et al (2017) A spatial interactome reveals the protein organization of the algal CO2-concentrating mechanism. Cell 171(1):133–147 e14

    Article  CAS  Google Scholar 

  13. Gingras AC, Abe KT, Raught B (2019) Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles. Curr Opin Chem Biol 48:44–54

    Article  CAS  Google Scholar 

  14. Han S, Li J, Ting AY (2018) Proximity labeling: spatially resolved proteomic mapping for neurobiology. Curr Opin Neurobiol 50:17–23

    Article  CAS  Google Scholar 

  15. Samavarchi-Tehrani P, Samson R, Gingras AC (2020) Proximity dependent biotinylation: key enzymes and adaptation to proteomics approaches. Mol Cell Proteomics 19(5):757–773

    Article  CAS  Google Scholar 

  16. Yanagita E, Imagawa N, Ohbayashi C et al (2011) Rapid multiplex immunohistochemistry using the 4-antibody cocktail YANA-4 in differentiating primary adenocarcinoma from squamous cell carcinoma of the lung. Appl Immunohistochem Mol Morphol 19(6):509–513

    Article  CAS  Google Scholar 

  17. Katona B, Lindskog C (2022) The human protein atlas and antibody-based tissue profiling in clinical proteomics. Methods Mol Biol 2420:191–206

    Article  Google Scholar 

  18. Jungmann R, Avendãno MS, Woehrstein JB et al (2014) Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and exchange-PAINT. Nat Methods 11(3):313–318

    Article  CAS  Google Scholar 

  19. Schnitzbauer J, Strauss MT, Schlichthaerle T et al (2017) Super-resolution microscopy with DNA-PAINT. Nat Protoc 12(6):1198–1228

    Article  CAS  Google Scholar 

  20. Gut G, Herrmann MD, Pelkmans L (2018) Multiplexed protein maps link subcellular organization to cellular states. Science 361(6401):eaar7042

    Article  Google Scholar 

  21. Lin JR, Fallahi-Sichani M, Sorger PK (2015) Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method. Nat Commun 6:8390

    Article  CAS  Google Scholar 

  22. Goltsev Y, Samusik N, Kennedy-Darling J et al (2018) Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174(4):968–981 e15

    Article  CAS  Google Scholar 

  23. Lin JR, Izar B, Wang S et al (2018) Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. elife 7:e31657

    Article  Google Scholar 

  24. Glass G, Papin JA, Mandell JW (2009) SIMPLE: a sequential immunoperoxidase labeling and erasing method. J Histochem Cytochem 57(10):899–905

    Article  CAS  Google Scholar 

  25. Munro S, Pelham HR (1984) Use of peptide tagging to detect proteins expressed from cloned genes: deletion mapping functional domains of Drosophila hsp 70. EMBO J 3(13):3087–3093

    Article  CAS  Google Scholar 

  26. Wroblewska A, Dhainaut M, Ben-Zvi B et al (2018) Protein barcodes enable high-dimensional single-cell CRISPR screens. Cell 175(4):1141–1155 e16

    Article  CAS  Google Scholar 

  27. Hui JZ, Tamsen S, Song Y et al (2015) LASIC: light activated site-specific conjugation of native IgGs. Bioconjug Chem 26(8):1456–1460

    Article  CAS  Google Scholar 

  28. Warden-Rothman R, Caturegli I, Popik V et al (2013) Sortase-tag expressed protein ligation: combining protein purification and site-specific bioconjugation into a single step. Anal Chem 85(22):11090–11097

    Article  CAS  Google Scholar 

  29. Zappala F, Tsourkas A (2019) Site-specific Photocrosslinking to immunoglobulin G using photoreactive antibody-binding domains. Methods Mol Biol 2033:275–286

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01 CA241661 (Tsourkas) and R44 EB023750 (Yu). Andrew Tsourkas is a founder and owns equity in AlphaThera, a biotechnology company that sells antibody conjugation products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Tsourkas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Niu, J., Hagen, J., Yu, F., Kalyuzhny, A.E., Tsourkas, A. (2023). Labeling of Phospho-Specific Antibodies with oYo-Link® Epitope Tags for Multiplex Immunostaining. In: Kalyuzhny, A.E. (eds) Signal Transduction Immunohistochemistry. Methods in Molecular Biology, vol 2593. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2811-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2811-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2810-2

  • Online ISBN: 978-1-0716-2811-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics