Skip to main content

Identification of Deubiquitinase Substrates in Saccharomyces cerevisiae by Systematic Overexpression

  • Protocol
  • First Online:
Deubiquitinases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2591))

  • 802 Accesses

Abstract

A significant hurdle to understanding the functions of deubiquitinases (DUBs) is the identification of their in vivo substrates. Substrate identification can be difficult for two reasons. First, many proteins that are degraded by the ubiquitin–proteasome system are expressed at relatively low levels in the cell, and second, redundancy between DUBs complicates loss of function screening approaches. Here, we describe a systematic overexpression approach that takes advantage of genome-wide resources available in S. cerevisiae to overcome these challenges and identify DUB substrates in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Finley D, Ulrich HD, Sommer T et al (2012) The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 192:319–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Streich FC, Lima CD (2014) Structural and functional insights to ubiquitin-like protein conjugation. Biophysics 43:357–379

    CAS  Google Scholar 

  3. Clague MJ, Urbe S, Komander D (2019) Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol 81:1–15

    Google Scholar 

  4. Mevissen TET, Komander D (2017) Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem 86:159–192

    Article  CAS  PubMed  Google Scholar 

  5. Isasa M, Rose CM, Elsasser S et al (2015) Multiplexed, proteome-wide protein expression profiling: yeast deubiquitylating enzyme knockout strains. J Proteome Res 14:5306–5317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beckley JR, Chen J-S, Yang Y et al (2015) A degenerate cohort of yeast membrane trafficking DUBs mediates cell polarity and survival. Mol Cell Proteomics 14:3132–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kwon S-K, Saindane M, Baek K-H (2017) p53 stability is regulated by diverse deubiquitinating enzymes. Biochim Biophys Acta 1868:404–411

    CAS  Google Scholar 

  8. Ghaemmaghami S, Huh W-K, Bower K et al (2003) Global analysis of protein expression in yeast. Nature 425:737–741

    Article  CAS  PubMed  Google Scholar 

  9. Huh W-K, Falvo JV, Gerke LC et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  CAS  PubMed  Google Scholar 

  10. Sopko R, Huang D, Preston N et al (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21:319–330

    Article  CAS  PubMed  Google Scholar 

  11. Mapa CE, Arsenault HE, Conti MM et al (2018) A balance of deubiquitinating enzymes controls cell cycle entry. Mol Biol Cell 29:2821–2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Belle A, Tanay A, Bitincka L et al (2006) Quantification of protein half-lives in the budding yeast proteome. Proc Natl Acad Sci 103:13004–13009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martin-Perez M, Villén J (2017) Determinants and regulation of protein turnover in yeast. Cell Syst 5:283–294.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kong K-YE, Fischer B, Meurer M et al (2021) Timer-based proteomic profiling of the ubiquitin-proteasome system reveals a substrate receptor of the GID ubiquitin ligase. Mol Cell 81:2460–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Christiano R, Nagaraj N, Fröhlich F et al (2014) Global proteome turnover analyses of the yeasts S. cerevisiae and S pombe. Cell Rep 9:1959–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gietz RD, Schiestl RH (2007) Microtiter plate transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:5–8

    Article  CAS  PubMed  Google Scholar 

  17. Landry BD, Doyle JP, Toczyski DP et al (2012) F-box protein specificity for G1 cyclins is dictated by subcellular localization. PLoS Genet 8:e1002851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Landry BD, Mapa CE, Arsenault HE et al (2014) Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression. EMBO J 33:1044–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank members of the Benanti Lab for helpful discussions and suggestions on this chapter. This work was supported by National Institutes of Health grant R35GM136280 to J.A.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Benanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Arsenault, H.E., Benanti, J.A. (2023). Identification of Deubiquitinase Substrates in Saccharomyces cerevisiae by Systematic Overexpression. In: Maupin-Furlow, J., Edelmann, M.J. (eds) Deubiquitinases. Methods in Molecular Biology, vol 2591. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2803-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2803-4_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2802-7

  • Online ISBN: 978-1-0716-2803-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics