Skip to main content

Screening Metagenomes for Algae Cell Wall Carbohydrates Degrading Hydrolases in Enrichment Cultures

  • Protocol
  • First Online:
Metagenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2555))

Abstract

Sustainable use of natural products is one of the key challenges for the future. An increasing focus is on marine organic matter, mostly algae. New biotechnological tools for processing high amounts of micro- and macroalgae are necessary for efficient industrial degradation of marine matter. Secreted glycosyl hydrolases can be enriched and tested on the specific algae cell wall polymers of all algae groups (Rhodophyta; Phaeophyceae; Chlorophyta/Charophyta). Metagenomic analyses established new possibilities to screen algae-associated microbiomes for novel degrading enzymes in combination with sequence-based function prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bórawski P, Bełdycka-Bórawska A, Szymańska EJ et al (2019) Development of renewable energy sources market and biofuels in the European Union. J Clean Prod 228:467–484

    Article  Google Scholar 

  2. Daroń M, Wilk M (2021) Management of energy sources and the development potential in the energy production sector—a comparison of EU countries. Energies 14:685

    Article  Google Scholar 

  3. Smith P, Gregory PJ (2013) Climate change and sustainable food production. Proc Nutr Soc 72:21–28

    Article  PubMed  Google Scholar 

  4. Pfeuty B, Thommen Q, Corellou F et al (2012) Circadian clocks in changing weather and seasons: lessons from the picoalga Ostreococcus tauri. BioEssays 34:781–790

    Article  PubMed  Google Scholar 

  5. Bolton JJ (2010) The biogeography of kelps (Laminariales, Phaeophyceae): a global analysis with new insights from recent advances in molecular phylogenetics. Helgol Mar Res 64:263–279

    Article  Google Scholar 

  6. Field B, Randerson JT et al (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  PubMed  Google Scholar 

  7. Arrigo KR (2005) Marine microorganisms and global nutrient cycles. Nature 437:349–355

    Article  CAS  PubMed  Google Scholar 

  8. Adeniyi OM, Azimov U, Burluka A (2018) Algae biofuel: current status and future applications. Renew Sust Energ Rev 90:316–335

    Article  Google Scholar 

  9. Schmidt TM, DeLong EF, Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 1991:4371–4378

    Article  Google Scholar 

  10. Ferrer M, Golyshina OV, Chernikova TN et al (2005) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7:1996–2010

    Article  CAS  PubMed  Google Scholar 

  11. Ferrer M, Golyshina OV, Plou FJ et al (2005) A novel alpha-glucosidase from the acidophilic archaeon Ferroplasma acidiphilum strain Y with high transglycosylation activity and an unusual catalytic nucleophile. Biochem J 391:269–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beloqui A, Pita M, Polaina J et al (2006) Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. J Biol Chem 281:22933–22942

    Article  CAS  PubMed  Google Scholar 

  13. Voget S, Leggewie C, Uesbeck A et al (2003) Prospecting for novel biocatalysts in a soil metagenome. Appl Environ Microbiol 69:6235–6242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Streit WR, Schmitz RA (2004) Metagenomics - the key to the uncultured microbes. Curr Opin Microbiol 7:492–498

    Article  CAS  PubMed  Google Scholar 

  15. Schmeisser C, Steele H, Streit WR (2007) Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol 75:955–962

    Article  CAS  PubMed  Google Scholar 

  16. Daniel R (2004) The soil metagenome – a rich resource for the discovery of novel natural products. Curr Opin Biotechnol 15:199–204

    Article  CAS  PubMed  Google Scholar 

  17. Krohn I, Bergmann L, Qi M et al (2021) Deep (Meta)genomics and (Meta)transcriptome analyses of fungal and bacteria consortia from aircraft tanks and kerosene identify key genes in fuel and tank corrosion. Front Microbiol 12:722259

    Article  PubMed  PubMed Central  Google Scholar 

  18. Krohn-Molt I, Wemheuer B, Alawi M et al (2013) Metagenome survey of a multispecies and alga-associated biofilm revealed key elements of bacterial-algal interactions in photobioreactors. Appl Environ Microbiol 79:6196–6206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bari L, Yeasmin S (2021) Microbes culture methods. In: Chaplan MJ (ed) Reference module in biomedical sciences. Elsevier

    Google Scholar 

  20. Bäumgen M, Dutschei T, Bornscheuer UT (2021) Marine polysaccharides: occurrence, enzymatic degradation and utilization. Chembiochem 22:2247–2256

    Article  PubMed  PubMed Central  Google Scholar 

  21. Deniaud-Bouët E, Kervarec N, Michel G et al (2014) Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae. Ann Bot 114:1203–1216

    Article  PubMed  PubMed Central  Google Scholar 

  22. Quatrano RS, Stevens PT (1976) Cell wall assembly in fucus zygotes. Plant Pysiol 1976:224–231

    Google Scholar 

  23. Vreeland V, Waite JH, Epstein L (1998) Polyphenols and oxidases in substratum adhesion by marine algae and mussels. J Phycol 1998:1–8

    Article  Google Scholar 

  24. Wiencke C, Clayton MN, Schoenwaelder M (2004) Sensitivity and acclimation to UV radiation of zoospores from five species of Laminariales from the Arctic. Mar Biol 145:31–39

    Article  Google Scholar 

  25. Verhaeghe EF, Fraysse A, Guerquin-Kern J-L et al (2008) Microchemical imaging of iodine distribution in the brown alga Laminaria digitata suggests a new mechanism for its accumulation. J Biol Inorg Chem 13:257–269

    Article  CAS  PubMed  Google Scholar 

  26. Drula E, Garron M-L, Dogan S et al (2022) The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res 50:D571–D577

    Article  CAS  PubMed  Google Scholar 

  27. Berteau O, Mulloy B (2003) Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 13:29R–40R

    Article  CAS  PubMed  Google Scholar 

  28. Kadam SU, Tiwari BK, O’Donnell CP (2015) Extraction, structure and biofunctional activities of laminarin from brown algae. Int J Food Sci Technol 50:24–31

    Article  CAS  Google Scholar 

  29. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277

    Article  CAS  PubMed  Google Scholar 

  31. Moreira LRS, Filho EXF (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178

    Article  CAS  PubMed  Google Scholar 

  32. Bastawde KB (1992) Xylan structure, microbial xylanases, and their mode of action. World J Microbiol Biotechnol 1992:353–368

    Article  Google Scholar 

  33. Béguin P, Aubert J-P (1994) The biological degradation of cellulose. FEMS Microbiol Rev 1994:25–58

    Article  Google Scholar 

  34. Necas J, Bartosikova L (2013) Carageenan: a review. Vet Med 2013:187–205

    Article  Google Scholar 

  35. Juanes JA (1991) International workshop on Gelidium: proceedings of the international workshop on Gelidium Held in Santander, Spain, September 3–8 1990, Developments in Hydrobiology Series, vol 68. Springer, Dordrecht

    Book  Google Scholar 

  36. Morrice LM, McLean MW, Long WF et al (1984) Porphyran primary structure. In: Bird CJ, Ragan MA (eds) Eleventh international seaweed symposium. Springer, Dordrecht, pp 572–575

    Chapter  Google Scholar 

  37. Jönsson M, Allahgholi L, Sardari RR et al (2020) Extraction and modification of macroalgal polysaccharides for current and Next-Generation applications. Molecules 2020:930

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jascha F. H. Macdonald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Macdonald, J.F.H., Krohn, I., Streit, W.R. (2023). Screening Metagenomes for Algae Cell Wall Carbohydrates Degrading Hydrolases in Enrichment Cultures. In: Streit, W.R., Daniel, R. (eds) Metagenomics. Methods in Molecular Biology, vol 2555. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2795-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2795-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2794-5

  • Online ISBN: 978-1-0716-2795-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics