Skip to main content

Functional Metagenomics Approach for the Discovery of Novel Genes Encoding Phosphatase Activity

  • Protocol
  • First Online:
Metagenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2555))

Abstract

Phosphate release from inorganic and organic phosphorus compounds can be enzymatically mediated. Phosphate-releasing enzymes, comprising acid and alkaline phosphatases, are recognized as useful biocatalysts in applications such as plant and animal nutrition, bioremediation, and diagnostic analysis. Here, we describe a functional metagenomics approach enabling rapid identification of genes encoding these enzymes. The target genes are detected based on small- and large-insert metagenomic libraries derived from diverse environments. This approach has the potential to unveil entirely new phosphatase families or subfamilies and members of known enzyme classes that hydrolyze phosphomonoester bonds such as phytases. Additionally, we provide a strategy for efficient heterologous expression of phosphatase genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McDowell LR (2003) Chapter 2: Calcium and phosphorus. In: McDowell LR (ed) Minerals in animal and human nutrition, 2nd edn. Elsevier, Amsterdam, pp 33–100

    Chapter  Google Scholar 

  2. Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ 25:53–88

    Article  Google Scholar 

  3. Tarafdar JC, Marschner H (1994) Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol Biochem 26:387–395

    Article  CAS  Google Scholar 

  4. Cromwell GL (2009) ASAS centennial paper: landmark discoveries in swine nutrition in the past century. J Anim Sci 87:778–792

    Article  CAS  PubMed  Google Scholar 

  5. Bertolotti A (2018) The split protein phosphatase system. Biochem J 475:3707–3723

    Article  CAS  PubMed  Google Scholar 

  6. Lim BL, Yeung P, Cheng C, Hill JE (2007) Distribution and diversity of phytate-mineralizing bacteria. ISME J 1:321–330

    Article  CAS  PubMed  Google Scholar 

  7. Muginova SV, Zhavoronkova AM, Polyakov AE, Shekhovtsova TN (2007) Application of alkaline phosphatases from different sources in pharmaceutical and clinical analysis for the determination of their cofactors; Zinc and Magnesium ions. Anal Sci 23:357–363

    Article  PubMed  Google Scholar 

  8. Greiner R (2004) Purification and properties of a phytate-degrading enzyme from Pantoea agglomerans. Protein J 23:567–576

    Article  CAS  PubMed  Google Scholar 

  9. Cho J, Lee C, Kang S, Lee J, Lee H et al (2005) Molecular cloning of a phytase gene (phy M) from Pseudomonas syringae MOK1. Curr Microbiol 51:11–15

    Article  CAS  PubMed  Google Scholar 

  10. Cheng W, Chiu CS, Guu YK, Tsai ST, Liu CH (2013) Expression of recombinant phytase of Bacillus subtilis E20 in Escherichia coli HMS 174 and improving the growth performance of white shrimp, Litopenaeus vannamei, juveniles by using phytase-pretreated soybean meal-containing diet. Aquac Nutr 19:117–127

    Article  CAS  Google Scholar 

  11. Sarikhani MR, Malboobi MA, Aliasgharzad N, Greine R, Yakhchali B (2010) Functional screening of phosphatase-encoding genes from bacterial sources. Iran J Biotechnol 8:275–279

    CAS  Google Scholar 

  12. Riccio ML, Rossolini GM, Lombardi G, Chiesurin A, Satta G (1997) Expression cloning of different bacterial phosphataseencoding genes by histochemical screening of genomic libraries onto an indicator medium containing phenolphthalein diphosphate and methyl green. J Appl Microbiol 82:177–185

    Article  CAS  PubMed  Google Scholar 

  13. Tan H, Mooij MJ, Barret M, Hegarty PM, Harington C, Dobson ADW, O’Gara F (2014) Identification of novel phytase genes from an agricultural soil-derived metagenome. J Microbiol Biotechnol 24:113–118

    Article  CAS  PubMed  Google Scholar 

  14. Yao MZ, Zhang YH, Lu WL, Hu MQ, Wang W, Liang AH (2012) Phytases: crystal structures, protein engineering and potential biotechnological applications. J Appl Microbiol 112:1–14

    Article  CAS  PubMed  Google Scholar 

  15. Castillo Villamizar GA, Nacke H, Boehning M, Herz K, Daniel R (2019) Functional metagenomics reveals an overlooked diversity and novel features of soil-derived bacterial phosphatases and phytases. MBio 10:e01966–e01918

    Article  PubMed  PubMed Central  Google Scholar 

  16. Castillo Villamizar GA, Nacke H, Griese L, Tabernero L, Funkner K, Daniel R (2019) Characteristics of the first protein tyrosine phosphatase with phytase activity from a soil metagenome. Genes (Basel) 10:101

    Article  PubMed Central  Google Scholar 

  17. Castillo Villamizar GA, Funkner K, Nacke H, Foerster K, Daniel R (2019) Functional metagenomics reveals a new catalytic domain, the metallo-β-lactamase superfamily domain, associated with phytase activity. mSphere 4:e00167–e00119

    Article  PubMed  PubMed Central  Google Scholar 

  18. Farias N, Almeida I, Meneses C (2018) New bacterial phytase through metagenomic prospection. Molecules 23:448

    Article  PubMed Central  Google Scholar 

  19. Kennelly PJ (2001) Protein phosphatases-a phylogenetic perspective. Chem Rev 101:2291–2312

    Article  CAS  PubMed  Google Scholar 

  20. Huang H, Pandya C, Liu C, Al-Obaidi NF, Wang M et al (2015) Panoramic view of a superfamily of phosphatases through substrate profiling. Proc Natl Acad Sci 112:E1974–E1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Simon C, Daniel R (2010) Construction of small-insert and large-insert metagenomic libraries. Metagenomics Methods Protoc 668:39–50

    Article  CAS  Google Scholar 

  22. Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  24. Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR et al (2020) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 49:D10–D17

    Article  PubMed Central  Google Scholar 

  25. Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY et al (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41:D348–D352

    Article  CAS  PubMed  Google Scholar 

  26. Heinonen JK, Lahti RJ (1981) A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal Biochem 113:313–317

    Article  CAS  PubMed  Google Scholar 

  27. Vijayaraghavan P, Primiya RR, Prakash-Vincent SG (2013) Thermostable alkaline phytase from Alcaligenes sp. in improving bioavailability of phosphorus in animal feed: in vitro analysis. ISRN Biotechnol 2013:6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Daniel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Castillo Villamizar, G.A., Nacke, H., Daniel, R. (2023). Functional Metagenomics Approach for the Discovery of Novel Genes Encoding Phosphatase Activity. In: Streit, W.R., Daniel, R. (eds) Metagenomics. Methods in Molecular Biology, vol 2555. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2795-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2795-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2794-5

  • Online ISBN: 978-1-0716-2795-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics