Skip to main content

Functional Metagenomics as a Tool to Tap into Natural Diversity of Valuable Biotechnological Compounds

  • Protocol
  • First Online:
Metagenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2555))

Abstract

The marine ecosystem covers more than 70% of the world’s surface, and oceans represent a source of varied types of organisms due to the diversified environment. Consequently, the marine environment is an exceptional depot of novel bioactive natural products, with structural and chemical features generally not found in terrestrial habitats. Here, in particular, microbes represent a vast source of unknown and probably new physiological characteristics. They have evolved during extended evolutionary processes of physiological adaptations under various environmental conditions and selection pressures. However, to date, the biodiversity of marine microbes and the versatility of their bioactive compounds and metabolites have not been fully explored. Thus, metagenomic tools are required to exploit the untapped marine microbial diversity and their bioactive compounds. This chapter focuses on function-based marine metagenomics to screen for bioactive molecules of value for biotechnology. Functional metagenomic strategies are described, including sampling in the marine environment, constructing marine metagenomic large-insert libraries, and examples on function-based screens for quorum quenching and anti-biofilm activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chappell A (2020) Into the deep: new insights into integrated ocean mapping and habitat characterizations of the North Atlantic and Eastern Pacific basins. In: Ocean sciences meeting 2020, Agu

    Google Scholar 

  2. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95(12):6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Flemming H-C, Wuertz S (2019) Bacteria and archaea on earth and their abundance in biofilms. Nat Rev Microbiol 17(4):247–260

    Article  CAS  PubMed  Google Scholar 

  4. Brander KM, Ottersen G, Bakker JP, Beaugrand G, Herr H et al (2016) Environmental impacts – marine ecosystems. In: North Sea region climate change assessment. Springer, Cham, pp 241–274

    Chapter  Google Scholar 

  5. Costello MJ, Chaudhary C (2017) Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr Biol 27(11):R511–R527

    Article  CAS  PubMed  Google Scholar 

  6. Decho AW, Gutierrez T (2017) Microbial extracellular polymeric substances (EPSs) in ocean systems. Front Microbiol 8:922

    Article  PubMed  PubMed Central  Google Scholar 

  7. Malve H (2016) Exploring the ocean for new drug developments: marine pharmacology. J Pharm Bioallied Sci 8(2):83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vignesh S, Raja A, James RA (2011) Marine drugs: implication and future studies. Int J Pharmacol 7:22–30

    Article  CAS  Google Scholar 

  9. Martins A, Vieira H, Gaspar H, Santos S (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drugs 12(2):1066–1101

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rao TE, Imchen M, Kumavath R (2017) Marine enzymes: production and applications for human health. In: Advances in food and nutrition research, vol 80. Elsevier, pp 149–163

    Google Scholar 

  11. Rotter A, Bacu A, Barbier M, Bertoni F, Bones AM et al (2020) A new network for the advancement of marine biotechnology in Europe and beyond. Front Mar Sci 7:278

    Article  Google Scholar 

  12. Greco GR, Cinquegrani M (2016) Firms plunge into the sea. Marine biotechnology industry, a first investigation. Front Mar Sci 2:124

    Article  Google Scholar 

  13. Mayekar T, Salgaonkar A, Koli J, Patil P, Chaudhari A et al (2012) Marine biotechnology: bioactive natural products and their applications. Aquafind

    Google Scholar 

  14. Lozada M, Dionisi HM (2015) Microbial bioprospecting in marine environments. In: Springer handbook of marine biotechnology. Springer, pp 307–326

    Chapter  Google Scholar 

  15. Pan SY, Pan S, Yu Z-L, Ma D-L, Chen S-B et al (2010) New perspectives on innovative drug discovery: an overview. J Pharm Pharm Sci 13(3):450–471

    Article  PubMed  Google Scholar 

  16. Khalifa SA, Elias N, Farag MA, Chen L, Saeed A et al (2019) Marine natural products: a source of novel anticancer drugs. Mar Drugs 17(9):491

    Article  CAS  PubMed Central  Google Scholar 

  17. Joshi B, Panda SK, Jouneghani RS, Liu M, Parajuli N et al (2020) Antibacterial, antifungal, antiviral, and anthelmintic activities of medicinal plants of Nepal selected based on ethnobotanical evidence. Evid Based Complementary Altern Med 2020:1043471

    Article  Google Scholar 

  18. Dayanidhi DL, Thomas BC, Osterberg JS, Vuong M, Vargas G et al (2021) Exploring the diversity of the marine environment for new anti-cancer compounds. Front Mar Sci 7:1184

    Article  Google Scholar 

  19. Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett 309(1):1–7

    CAS  PubMed  Google Scholar 

  21. Steen AD, Crits-Christoph A, Carini P, DeAngelis KM, Fierer N et al (2019) High proportions of bacteria and archaea across most biomes remain uncultured. ISME J 13(12):3126–3130

    Article  PubMed  PubMed Central  Google Scholar 

  22. Streit WR, Schmitz RA (2004) Metagenomics – the key to the uncultured microbes. Curr Opin Microbiol 7(5):492–498

    Article  CAS  PubMed  Google Scholar 

  23. Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3:510–516

    Article  CAS  PubMed  Google Scholar 

  24. Pham VD, Palden T, DeLong EF (2007) Large-scale screens of metagenomic libraries. J Vis Exp 4:201

    Google Scholar 

  25. DeLong EF (2009) The microbial ocean from genomes to biomes. Nature 459(7244):200–206

    Article  CAS  PubMed  Google Scholar 

  26. Kirubakaran R, ArulJothi K, Revathi S, Shameem N, Parray JA (2020) Emerging priorities for microbial metagenome research. Bioresour Technol Rep 11:100485

    Article  PubMed  PubMed Central  Google Scholar 

  27. Franco-Duarte R, Černáková L, Kadam S, Kaushik S, Salehi B et al (2019) Advances in chemical and biological methods to identify microorganisms – from past to present. Microorganisms 7(5):130

    Article  CAS  PubMed Central  Google Scholar 

  28. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77(4):1153–1161

    Article  CAS  PubMed  Google Scholar 

  29. Trindade M, van Zyl LJ, Navarro-Fernández J, Abd Elrazak A (2015) Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Front Microbiol 6:890

    Article  PubMed  PubMed Central  Google Scholar 

  30. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68(4):669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Banik JJ, Brady SF (2010) Recent application of metagenomic approaches toward the discovery of antimicrobials and other bioactive small molecules. Curr Opin Microbiol 13(5):603–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ngara TR, Zhang H (2018) Recent advances in function-based metagenomic screening. Genomics Proteomics Bioinformatics 16(6):405–415. https://doi.org/10.1016/j.gpb.2018.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cao Y, Fanning S, Proos S, Jordan K, Srikumar S (2017) A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Front Microbiol 8:1829

    Article  PubMed  PubMed Central  Google Scholar 

  34. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N (2017) Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35(9):833–844

    Article  CAS  PubMed  Google Scholar 

  35. Burks DJ, Azad RK (2020) Higher-order Markov models for metagenomic sequence classification. Bioinformatics 36(14):4130–4136

    Article  CAS  PubMed  Google Scholar 

  36. Bosi E, Bacci G, Mengoni A, Fondi M (2017) Perspectives and challenges in microbial communities metabolic modeling. Front Genet 8:88

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rocha-Martin J, Harrington C, Dobson AD, O’Gara F (2014) Emerging strategies and integrated systems microbiology technologies for biodiscovery of marine bioactive compounds. Mar Drugs 12(6):3516–3559

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ferrer M, Beloqui A, Timmis KN, Golyshin PN (2009) Metagenomics for mining new genetic resources of microbial communities. J Mol Microbiol Biotechnol 16(1–2):109–123

    CAS  PubMed  Google Scholar 

  39. Guazzaroni ME, Silva-Rocha R, Ward RJ (2015) Synthetic biology approaches to improve biocatalyst identification in metagenomic library screening. Microb Biotechnol 8(1):52–64

    Article  CAS  PubMed  Google Scholar 

  40. Brady SF, Chao CJ, Handelsman J, Clardy J (2001) Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA. Org Lett 3(13):1981–1984

    Article  CAS  PubMed  Google Scholar 

  41. Lim HK, Chung EJ, Kim J-C, Choi GJ, Jang KS et al (2005) Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli. Appl Environ Microbiol 71(12):7768–7777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gillespie DE, Brady SF, Bettermann AD, Cianciotto NP, Liles MR et al (2002) Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68:4301–4306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tiwari R, Nain L, Labrou NE, Shukla P (2018) Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review. Crit Rev Microbiol 44(2):244–257

    Article  CAS  PubMed  Google Scholar 

  44. Escuder-Rodríguez J-J, DeCastro M-E, Cerdán M-E, Rodríguez-Belmonte E et al (2018) Cellulases from thermophiles found by metagenomics. Microorganisms 6(3):66

    Article  PubMed Central  Google Scholar 

  45. Devi SG, Fathima AA, Sanitha M, Iyappan S, Curtis WR, Ramya M (2016) Expression and characterization of alkaline protease from the metagenomic library of tannery activated sludge. J Biosci Bioeng 122(6):694–700

    Article  CAS  PubMed  Google Scholar 

  46. Pessoa TB, Rezende RP, Marques ELS, Pirovani CP, Dos Santos TF et al (2017) Metagenomic alkaline protease from mangrove sediment. J Basic Microbiol 57(11):962–973

    Article  CAS  PubMed  Google Scholar 

  47. López-López O, Cerdan ME, Gonzalez Siso MI (2014) New extremophilic lipases and esterases from metagenomics. Curr Protein Pept Sci 15(5):445–455

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kaur G, Singh A, Sharma R, Sharma V, Verma S, Sharma PK (2016) Cloning, expression, purification and characterization of lipase from Bacillus licheniformis, isolated from hot spring of Himachal Pradesh, India. 3 Biotech 6(1):49

    Article  PubMed  PubMed Central  Google Scholar 

  49. Harzevili FD, Chen H (2018) Microbial biotechnology: Progress and trends. CRC Press

    Book  Google Scholar 

  50. Felczykowska A, Krajewska A, Zielińska S, Łoś JM, Bloch SK, Nejman-Faleńczyk B (2015) The most widespread problems in the function-based microbial metagenomics. Acta Biochim Pol 62(1):161–166

    Article  CAS  PubMed  Google Scholar 

  51. Robinson SL, Piel J, Sunagawa S (2021) A roadmap for metagenomic enzyme discovery. Nat Prod Rep 38(11):1994–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Katzke N, Knapp A, Loeschcke A, Drepper T, Jaeger K-E (2017) Novel tools for the functional expression of metagenomic DNA. In: Metagenomics. Springer, pp 159–196

    Chapter  Google Scholar 

  53. Gabor EM, Alkema WB, Janssen DB (2004) Quantifying the accessibility of the metagenome by random expression cloning techniques. Environ Microbiol 6(9):879–886. https://doi.org/10.1111/j.1462-2920.2004.00640.x

    Article  CAS  PubMed  Google Scholar 

  54. Alam K, Abbasi MN, Hao J, Zhang Y, Li A (2021) Strategies for natural products discovery from uncultured mMicroorganisms. Molecules (Basel, Switzerland) 26(10):2977

    Article  CAS  Google Scholar 

  55. Culligan EP, Sleator RD (2016) Editorial: from genes to species: novel insights from metagenomics. Front Microbiol 7:1181. https://doi.org/10.3389/fmicb.2016.01181

    Article  PubMed  PubMed Central  Google Scholar 

  56. Schmidt EW (2008) Trading molecules and tracking targets in symbiotic interactions. Nat Chem Biol 4(8):466–473. https://doi.org/10.1038/nchembio.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brady SF, Simmons L, Kim JH, Schmidt EW (2009) Metagenomic approaches to natural products from free-living and symbiotic organisms. Nat Prod Rep 26(11):1488–1503. https://doi.org/10.1039/b817078a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Adnani N, Rajski SR, Bugni TS (2017) Symbiosis-inspired approaches to antibiotic discovery. Nat Prod Rep 34(7):784–814. https://doi.org/10.1039/C7NP00009J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172. https://doi.org/10.3389/fmicb.2014.00172

    Article  PubMed  PubMed Central  Google Scholar 

  60. Atanasov AG, Zotchev SB, Dirsch VM, Orhan IE, Banach M et al (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 20(3):200–216. https://doi.org/10.1038/s41573-020-00114-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nora LC, Westmann CA, Martins-Santana L, Alves LF, Monteiro LMO et al (2019) The art of vector engineering: towards the construction of next-generation genetic tools. Microb Biotechnol 12(1):125–147. https://doi.org/10.1111/1751-7915.13318

    Article  CAS  PubMed  Google Scholar 

  62. Lam KN, Cheng J, Engel K, Neufeld JD, Charles TC (2015) Current and future resources for functional metagenomics. Front Microbiol 6:1196. https://doi.org/10.3389/fmicb.2015.01196

    Article  PubMed  PubMed Central  Google Scholar 

  63. Harbers M (2008) The current status of cDNA cloning. Genomics 91(3):232–242

    Article  CAS  PubMed  Google Scholar 

  64. Cowan D, Meyer Q, Stafford W, Muyanga S, Cameron R, Wittwer P (2005) Metagenomic gene discovery: past, present and future. Trends Biotechnol 23(6):321–329

    Article  CAS  PubMed  Google Scholar 

  65. Beja O, Suzuki MT, Koonin EV, Aravind L, Hadd A et al (2000) Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ Microbiol 2(5):516–529

    Article  CAS  PubMed  Google Scholar 

  66. Distaso MA, Tran H, Ferrer M, Golyshin PN (2017) Metagenomic mining of enzyme diversity. In: Lee SY (ed) Consequences of microbial interactions with hydrocarbons, oils, and lipids: production of fuels and chemicals. Springer, Cham, pp 245–269. https://doi.org/10.1007/978-3-319-50436-0_216

    Chapter  Google Scholar 

  67. Weiland-Bräuer N, Pinnow N, Schmitz RA (2015) Novel reporter for identification of interference with acyl homoserine lactone and autoinducer-2 quorum sensing. Appl Environ Microbiol 81(4):1477–1489. https://doi.org/10.1128/AEM.03290-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gabor EM, de Vries eJ, Janssen DB (2003) Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol Ecol 44:153–163

    Article  CAS  PubMed  Google Scholar 

  69. Henne A, Daniel R, Schmitz RA, Gottschalk G (1999) Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate. Appl Environ Microbiol 65(9):3901–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 103(32):12115–12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. De Corte D, Yokokawa T, Varela MM, Agogue H, Herndl GJ (2009) Spatial distribution of Bacteria and Archaea and amoA gene copy numbers throughout the water column of the Eastern Mediterranean Sea. ISME J 3:147–158

    Article  PubMed  Google Scholar 

  72. Borrel G, Brugere J-F, Gribaldo S, Schmitz RA, Moissl-Eichinger C (2020) The host-associated archaeome. Nat Rev Microbiol 18(11):622–636

    Article  CAS  PubMed  Google Scholar 

  73. Treusch AH, Kletzin A, Raddatz G, Ochsenreiter T, Quaiser A et al (2004) Characterization of large insert DNA libraries from soil for environmental genomic studies of Archaea. Environ Microbiol 6:970–980

    Article  CAS  PubMed  Google Scholar 

  74. Wild J, Hradecna Z, Posfai G, Szybalski W (1996) A broad-host-range in vivo pop-out and amplification system for generating large quantities of 50- to 100-kb genomic fragments for direct DNA sequencing. Gene 179:181–188

    Article  CAS  PubMed  Google Scholar 

  75. Wild J, Hradecna Z, Szybalski W (2002) Conditionally amplifiable BACs: switching from singel-cpy to high-copy vectors and genomic clones. Genome Res 12:1434–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang W, Zheng G, Lu Y (2021) Recent advances in strategies for the cloning of natural product biosynthetic gene clusters. Front Bioeng Biotechnol 9:692797. https://doi.org/10.3389/fbioe.2021.692797

    Article  PubMed  PubMed Central  Google Scholar 

  77. Westenberg M, Bamps S, Soedling H, Hope IA, Dolphin CT (2010) Escherichia coli MW005: lambda Red-mediated recombineering and copy-number induction of oriV-equipped constructs in a single host. BMC Biotechnol 10(1):27

    Article  PubMed  PubMed Central  Google Scholar 

  78. Brady SF, Chao CJ, Clardy J (2002) New natural product families from an environmental DNA (eDNA) gene cluster. J Am Chem Soc 124:9968–9969

    Article  CAS  PubMed  Google Scholar 

  79. Al-Amoudi S, Razali R, Essack M, Amini MS, Bougouffa S, Archer JAC, Lafi FF, Bajic VB (2016) Metagenomics as a preliminary screen for antimicrobial bioprospecting. Gene 594(2):248–258. https://doi.org/10.1016/j.gene.2016.09.021

    Article  CAS  PubMed  Google Scholar 

  80. Madalozzo AD, Martini VP, Kuniyoshi KK, de Souza EM, Pedrosa FBO et al (2015) Immobilization of LipC12, a new lipase obtained by metagenomics, and its application in the synthesis of biodiesel esters. J Mol Catal B Enzym 116:45–51

    Article  CAS  Google Scholar 

  81. Almeida JM, Martini VP, Iulek J, Alnoch RC, Moure VR et al (2019) Biochemical characterization and application of a new lipase and its cognate foldase obtained from a metagenomic library derived from fat-contaminated soil. Int J Biol Macromol 137:442–454. https://doi.org/10.1016/j.ijbiomac.2019.06.203

    Article  CAS  PubMed  Google Scholar 

  82. Cretoiu MS, Kielak AM, Al-Soud WA, Sörensen SJ, van Elsas JD (2012) Mining of unexplored habitats for novel chitinases – chiA as a helper gene proxy in metagenomics. Appl Microbiol Biotechnol 94(5):1347–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Berini F, Presti I, Beltrametti F, Pedroli M, Vårum KM et al (2017) Production and characterization of a novel antifungal chitinase identified by functional screening of a suppressive-soil metagenome. Microb Cell Factories 16(1):16. https://doi.org/10.1186/s12934-017-0634-8

    Article  CAS  Google Scholar 

  84. Majernik A, Gottschalk G, Daniel R (2001) Screening of environmental DNA libraries for the presence of genes conferring Na+(Li+)/H+ antiporter activity on Escherichia coli: characterization of the recovered genes and the corresponding gene products. J Bacteriol 183(22):6645–6653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR (2018) Bacterial quorum sensing and microbial community interactions. MBio 9(3):e02331-02317. https://doi.org/10.1128/mBio.02331-17

    Article  Google Scholar 

  86. Bassler BL (2002) Small talk. Cell-to-cell communication in bacteria. Cell 109(4):421–424

    Article  CAS  PubMed  Google Scholar 

  87. Castillo A (2015) How bacteria use Quorum sensing to communicate: how do bacteria talk to each other. Nat Educ 8(2):4

    Google Scholar 

  88. Pereira CS, Thompson JA, Xavier KB (2013) AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 37(2):156–181

    Article  CAS  PubMed  Google Scholar 

  89. Grandclâment C, Tannières M, Morâra S, Dessaux Y, Faure DD (2016) Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 40:fuv038

    Google Scholar 

  90. Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2(11):a012427. https://doi.org/10.1101/cshperspect.a012427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rémy B, Mion S, Plener L, Elias M, Chabrière E, Daudé D (2018) Interference in bacterial quorum sensing: a biopharmaceutical perspective. Front Pharmacol 9:203–203. https://doi.org/10.3389/fphar.2018.00203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Krzyżek P (2019) Challenges and limitations of anti-quorum sensing therapies. Front Microbiol 10:2473–2473. https://doi.org/10.3389/fmicb.2019.02473

    Article  PubMed  PubMed Central  Google Scholar 

  93. Jiang Q, Chen J, Yang C, Yin Y, Yao K (2019) Quorum sensing: a prospective therapeutic target for bacterial diseases. BioMed Res Intern 2019:2015978–2015978. https://doi.org/10.1155/2019/2015978

    Article  CAS  Google Scholar 

  94. Bhardwaj A, Kittappa V, Rajpara N (2013) Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Pat Antiinfect Drug Discov 8:68–83. https://doi.org/10.2174/1574891X11308010012

    Article  CAS  PubMed  Google Scholar 

  95. Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15(12):740–755. https://doi.org/10.1038/nrmicro.2017.99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dong YH, Wang LY, Zhang LH (2007) Quorum-quenching microbial infections: mechanisms and implications. Philos Trans R Soc Lond A 362(1483):1201–1211

    CAS  Google Scholar 

  98. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(4):322–332. https://doi.org/10.1016/j.ijantimicag.2009.12.011

    Article  CAS  PubMed  Google Scholar 

  99. Romero M, Acuna L, Otero A (2012) Patents on quorum quenching: interfering with bacterial communication as a strategy to fight infections. Recent Pat Biotechnol 6(1):2–12

    Article  CAS  PubMed  Google Scholar 

  100. Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    Article  CAS  PubMed  Google Scholar 

  101. Apostolopoulos V, Bojarska J, Chai T-T, Elnagdy S, Kaczmarek K et al (2021) A global review on short peptides: frontiers and perspectives. Molecules (Basel, Switzerland) 26(2):430

    Article  CAS  Google Scholar 

  102. Mor A (2001) Peptides: biological activities of small peptides. e LS

    Google Scholar 

  103. Bosso M, Ständker L, Kirchhoff F, Münch J (2018) Exploiting the human peptidome for novel antimicrobial and anticancer agents. Bioorg Med Chem 26(10):2719–2726. https://doi.org/10.1016/j.bmc.2017.10.038

    Article  CAS  PubMed  Google Scholar 

  104. Hancock RE (2000) Cationic antimicrobial peptides: towards clinical applications. Expert Opin Investig Drugs 9(8):1723–1729

    Article  CAS  PubMed  Google Scholar 

  105. Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194

    Article  PubMed  PubMed Central  Google Scholar 

  106. Nguyen B-N, Tieves F, Rohr T, Wobst H, Schöpf FS et al (2021) Numaswitch: an efficient high-titer expression platform to produce peptides and small proteins. AMB Express 11(1):1–7

    Article  Google Scholar 

  107. Rungpragayphan S, Yamane T, Nakano H (2007) SIMPLEX: single-molecule PCR-linked in vitro expression: a novel method for high-throughput construction and screening of protein libraries. Methods Mol Biol 375:79–94

    CAS  PubMed  Google Scholar 

  108. Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, Gaffke L, Węgrzyn G (2021) Phage display and other peptide display technologies. FEMS Microbiol Rev:fuab052. https://doi.org/10.1093/femsre/fuab052

  109. Failmezger J (2018) Understanding limitations to increased potential of cell-free protein synthesis

    Google Scholar 

  110. He J, You H, Sandström E, Nittinger E, Bjerrum EJ et al (2021) Molecular optimization by capturing chemist’s intuition using deep neural networks. J Cheminform 13(1):1–17

    Article  Google Scholar 

  111. Gautam A, Chaudhary K, Kumar R, Sharma A, Kapoor P et al (2013) In silico approaches for designing highly effective cell penetrating peptides. J Transl Med 11(1):1–12

    Article  CAS  Google Scholar 

  112. Nongonierma AB, Dellafiora L, Paolella S, Galaverna G, Cozzini P, FitzGerald RJ (2018) In silico approaches applied to the study of peptide analogs of Ile-Pro-Ile in relation to their dipeptidyl peptidase IV inhibitory properties. Front Endocrinol 9:329

    Article  Google Scholar 

  113. Djordjevic D, Wiedmann M, McLandsborough L (2002) Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 68(6):2950–2958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Merritt JH, Kadouri DE, O’Toole GA (2005) Growing and analyzing static biofilms. Curr Protoc Microbiol Chapter 1:Unit-1B.1. https://doi.org/10.1002/9780471729259.mc01b01s00

    Article  PubMed  Google Scholar 

  115. Mack DR, Blain-Nelson PL (1995) Disparate in vitro inhibition of adhesion of enteropathogenic Escherichia coli RDEC-1 by mucins isolated from various regions of the intestinal tract. Pediatr Res 37(1):75–80

    Article  CAS  PubMed  Google Scholar 

  116. Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF et al (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22(6):996–1006. https://doi.org/10.1128/jcm.22.6.996-1006.1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pitts B, Hamilton MA, Zelver N, Stewart PS (2003) A microtiter-plate screening method for biofilm disinfection and removal. J Microbiol Methods 54(2):269–276. https://doi.org/10.1016/s0167-7012(03)00034-4

    Article  CAS  PubMed  Google Scholar 

  118. Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T et al (2017) Critical review on biofilm methods. Crit Rev Microbiol 43(3):313–351

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth A. Schmitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Weiland-Bräuer, N., Saleh, L., Schmitz, R.A. (2023). Functional Metagenomics as a Tool to Tap into Natural Diversity of Valuable Biotechnological Compounds. In: Streit, W.R., Daniel, R. (eds) Metagenomics. Methods in Molecular Biology, vol 2555. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2795-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2795-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2794-5

  • Online ISBN: 978-1-0716-2795-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics