Skip to main content

Peptide-Conjugated PMOs for the Treatment of Myotonic Dystrophy

  • Protocol
  • First Online:
Muscular Dystrophy Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2587))

Abstract

Antisense oligonucleotides (ASOs) have shown great therapeutic potential in the treatment of many neuromuscular diseases including myotonic dystrophy 1 (DM1). However, systemically delivered ASOs display poor biodistribution and display limited penetration into skeletal muscle. The conjugation of cell-penetrating peptides (CPPs) to phosphorodiamidate morpholino oligonucleotides (PMOs), a class of ASOs with a modified backbone, can be used to enhance ASO skeletal muscle penetration. Peptide–PMOs (P-PMOs) have been shown to be highly effective in correcting the DM1 skeletal muscle phenotype in both murine and cellular models of DM1 and at a molecular and functional level. Here we describe the synthesis and conjugation of P-PMOs and methods for analyzing their biodistribution and toxicity in the HSA-LR DM1 mouse model and their efficacy both in vitro and in vivo using FISH and RT-PCR splicing analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Theadom A, Rodrigues M, Roxburgh R et al (2014) Prevalence of muscular dystrophies: a systematic literature review. Neuroepidemiology 43:259–268

    Article  PubMed  Google Scholar 

  2. Brook JD, McCurrach ME, Harley HG et al (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68:799–808

    Article  CAS  PubMed  Google Scholar 

  3. Mahadevan M, Tsilfidis C, Sabourin L et al (1992) Myotonic dystrophy mutation: an unstable ctg repeat in the 3′ untranslated region of the gene. Science 255(5049):1253–1255

    Article  CAS  PubMed  Google Scholar 

  4. Fu Y-H, Pizzuni A, Fenwick RG et al (1992) An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science (New York, N.Y.) 255(5049):1256–1258

    Article  CAS  PubMed  Google Scholar 

  5. Taneja KL, McCurrach M, Schalling M et al (1995) Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J Cell Biol 128:995–1002

    Article  CAS  PubMed  Google Scholar 

  6. Davis BM, Mccurrach ME, Taneja KL et al (1997) Expansion of a CUG trinucleotide repeat in the 3′ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc Natl Acad Sci 94:7388–7393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee K, Li M, Manchanda M et al (2013) Compound loss of muscleblind-like function in myotonic dystrophy. EMBO Mol Med 5:1887–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miller JW, Urbinati CR, Teng-Umnuay P et al (2000) Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J 19:4439–4448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang ET, Treacy D, Eichinger K et al (2019) Transcriptome alterations in myotonic dystrophy skeletal muscle and heart. Hum Mol Genet 28:1312–1321

    Article  CAS  PubMed  Google Scholar 

  10. Mankodi A, Takahashi MP, Jiang H et al (2002) Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 10:35–44

    Article  CAS  PubMed  Google Scholar 

  11. Charizanis K, Lee KY, Batra R et al (2012) Muscleblind-like 2-mediated alternative splicing in the developing brain and dysregulation in myotonic dystrophy. Neuron 75:437–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fugier C, Klein AF, Hammer C et al (2011) Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat Med 17:720–725

    Article  CAS  PubMed  Google Scholar 

  13. Freyermuth F, Rau F, Kokunai Y et al (2016) Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy. Nat Commun 7:25

    Article  Google Scholar 

  14. López-Martínez A, Soblechero-Martín P, De-La-puente-ovejero L et al (2020) An overview of alternative splicing defects implicated in myotonic dystrophy type I. Genes 11:1109

    Article  PubMed  PubMed Central  Google Scholar 

  15. Porter B, Drug development pipeline for myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2), https://www.myotonic.org/sites/default/files/pages/files/Myotonic-Dystrophy-Drug-Development-Pipeline-as-of-Feb-01-2021.pdf

  16. Reddy K, Jenquin JR, Cleary JD, et al (2019) Mitigating RNA toxicity in myotonic dystrophy using small molecules. www.mdpi.com/journal/ijms

  17. López-Morató M, Brook JD, Wojciechowska M (2018) Small molecules which improve pathogenesis of myotonic dystrophy type:1. www.frontiersin.org

  18. Roberts TC, Langer R, Wood MJA (2020) Advances in oligonucleotide drug delivery. Nat Rev Drug Discov 19:673–694.

    Google Scholar 

  19. Summerton J, Weller D (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7:187–195

    Article  CAS  PubMed  Google Scholar 

  20. Hudziak RM, Barofsky E, Barofsky DF et al (1996) Resistance of Morpholino phosphorodiamidate oligomers to enzymatic degradation. Antisense Nucleic Acid Drug Dev 6:267–272

    Article  CAS  PubMed  Google Scholar 

  21. FDA grants accelerated approval to first drug for Duchenne muscular dystrophy | FDA. https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-first-drug-duchenne-muscular-dystrophy

  22. Aartsma-Rus A, Krieg AM (2017) FDA approves eteplirsen for duchenne muscular dystrophy: the next chapter in the eteplirsen saga. Nucleic Acid Ther 27:1–3. /pmc/articles/PMC5312460/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wheeler TM, Leger AJ, Pandey SK et al (2012) Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 488:111–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee JE, Bennett CF, Cooper TA (2012) RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1. Proc Natl Acad Sci U S A 109:4221–4226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jauvin D, Chrétien J, Pandey SK et al (2017) Targeting DMPK with antisense oligonucleotide improves muscle strength in myotonic dystrophy type 1. Mice 7:465–474

    CAS  Google Scholar 

  26. Yadava RS, Yu Q, Mandal M et al (2020) Systemic therapy in an RNA toxicity mouse model with an antisense oligonucleotide therapy targeting a non-CUG sequence within the DMPK 3′UTR RNA. Hum Mol Genet 29:1440–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klein AF, Varela MA, Arandel L et al (2019) Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice. J Clin Investig 129:4739–4744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mulders SAM, van den Broek WJAA, Wheeler TM et al (2009) Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc Natl Acad Sci U S A 106:13915–13920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wheeler TM, Sobczak K, Lueck JD et al (2009) Reversal of RNA dominance by displacement of protein sequestered on triplet repeat RNA. Science 325:336–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wojtkowiak-Szlachcic A, Taylor K, Stepniak-Konieczna E et al (2015) Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy. Nucleic Acids Res 43:3318–3331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakamori M, Sobczak K, Puwanant A et al (2013) Splicing biomarkers of disease severity in myotonic dystrophy. Ann Neurol 74:862–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pandey SK, Wheeler TM, Justice SL et al (2015) Identification and characterization of modified antisense oligonucleotides targeting DMPK in mice and nonhuman primates for the treatment of myotonic dystrophy type 1s. J Pharmacol Exp Ther 355:329–340

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ionis Pharmaceuticals Reports DMPKRx Phase 1/2 Trial Results. https://us8.campaign-archive.com/?u=8f5969cac3271759ce78c8354&id=8cc67ae9b8&e=cd1f4d18fe

  34. Betts C, Saleh AF, Arzumanov AA et al (2012) Pip6-PMO, a new generation of peptide-oligonucleotide conjugates with improved cardiac exon skipping activity for DMD treatment. Mol Ther Nucl Acids 1:e38

    Article  Google Scholar 

  35. Yin H, Moulton HM, Seow Y et al (2008) Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function. Hum Mol Genet 17:3909–3918

    Article  CAS  PubMed  Google Scholar 

  36. Gao X, Zhao J, Han G et al (2014) Effective dystrophin restoration by a novel muscle-homing peptide-morpholino conjugate in dystrophin-deficient mdx mice. In: Molecular therapy. Nature Publishing Group, pp 1333–1341

    Google Scholar 

  37. Leger AJ, Mosquea LM, Clayton NP et al (2013) Systemic delivery of a peptide-linked morpholino oligonucleotide neutralizes mutant RNA toxicity in a mouse model of myotonic dystrophy. Nucleic Acid Ther 23:109–117

    Article  CAS  PubMed  Google Scholar 

  38. Hammond SM, Hazell G, Shabanpoor F et al (2016) Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci USA 113:10962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mankodi A, Logigian E, Callahan L et al (2000) Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289:1769–1772

    Article  CAS  PubMed  Google Scholar 

  40. Vaidya VS, Ozer JS, Dieterle F et al (2010) Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol 28:478–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Arandel L, Espinoza MP, Matloka M et al (2017) Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds. Dis Model Mech 10:487–497

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. https://www.nature.com/articles/nmeth.2089

  43. Behrendt R, White P, Offer J (2016) Advances in Fmoc solid-phase peptide synthesis. J Pep Sci 22:4–27

    Google Scholar 

  44. Collins JM, Porter KA, Singh SK et al (2014) High-efficiency solid phase peptide synthesis (he -Spps). Org Lett 16:940

    Article  CAS  PubMed  Google Scholar 

  45. Ferreira T, Rasband W (2012) ImageJ User Guide ImageJ User Guide IJ 1.46r

    Google Scholar 

  46. Burki U, Keane J, Blain A et al (2015) Development and application of an ultrasensitive hybridization-based ELISA method for the determination of peptide-conjugated phosphorodiamidate morpholino oligonucleotides. Nucleic Acid Ther 25:275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Vinnova, NNF Center for Biosustainability, WCPR Wallenberg Center for Protein Research, and the Knut and Alice Wallenberg foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Varela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stoodley, J., Miraz, D.S., Jad, Y., Fischer, M., Wood, M.J.A., Varela, M.A. (2023). Peptide-Conjugated PMOs for the Treatment of Myotonic Dystrophy. In: Maruyama, R., Yokota, T. (eds) Muscular Dystrophy Therapeutics. Methods in Molecular Biology, vol 2587. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2772-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2772-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2771-6

  • Online ISBN: 978-1-0716-2772-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics