Skip to main content

Nucleic Acid Structure Prediction Including Pseudoknots Through Direct Enumeration of States: A User’s Guide to the LandscapeFold Algorithm

  • Protocol
  • First Online:
RNA Structure Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2586))

  • 833 Accesses

Abstract

Here we detail the LandscapeFold secondary structure prediction algorithm and how it is used. The algorithm was previously described and tested in (Kimchi O et al., Biophys J 117(3):520–532, 2019), though it was not named there. The algorithm directly enumerates all possible secondary structures into which up to two RNA or single-stranded DNA sequences can fold. It uses a polymer physics model to estimate the configurational entropy of structures including complex pseudoknots. We detail each of these steps and ways in which the user can adjust the algorithm as desired. The code is available on the GitHub repository https://github.com/ofer-kimchi/LandscapeFold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed W, Zheng K, Liu ZF (2016) Small non-coding RNAs: new insights in modulation of host immune response by intracellular bacterial pathogens. Front Immunol 7:1–10. ISSN 16643224. https://doi.org/10.3389/fimmu.2016.00431

  2. Boyd SD (2008) Everything you wanted to know about small RNA but were afraid to ask. Lab Invest 88(6):569–578. ISSN 00236837. https://doi.org/10.1038/labinvest.2008.32

  3. Zhang DY, Winfree E (2009) Control of DNA strand displacement kinetics using toehold exchange. J Am Chem Soc 131(47):1–16. ISSN 00027863. https://doi.org/10.1021/ja906987s

  4. Melamed S, Peer A, Faigenbaum-Romm R, Gatt YE, Reiss N, Bar A, Altuvia Y, Argaman L, Margalit H (2016) Global mapping of small RNA-target interactions in bacteria. Mol Cell 63(5):884–897. ISSN 10974164. https://doi.org/10.1016/j.molcel.2016.07.026

  5. Ramanathan M, Porter DF, Khavari PA (2019)Methods to study RNA–protein interactions. Nat Methods 16(3):225–234. ISSN 15487105. https://doi.org/10.1038/s41592-019-0330-1

  6. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. ISSN 0028-0836. https://doi.org/10.1038/346818a0

  7. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510. ISSN 0036-8075. https://doi.org/10.1126/science.2200121

  8. Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344(6265):467–468. ISSN 0028-0836. https://doi.org/10.1038/344467a0

  9. Olea C, Joyce GF (2016) Real-time detection of a self-replicating RNA enzyme. Molecules 21(10):1–12. ISSN 14203049. https://doi.org/10.3390/molecules21101310

  10. Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B, Jung JW, Kuchelmeister HY, Batista PJ, Torre EA, Kool ET, Chang HY (2015) Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519(7544):486–490. ISSN 14764687. https://doi.org/10.1038/nature14263

  11. Doudna JA (2000) Structural genomics of RNA. Nat Struct Biol 7:954–956. ISSN 10728368. https://doi.org/10.1038/80729

  12. Ritchie DB, Foster DA, Woodside MT (2012) Programmed − 1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding. Proc Nat Acad Sci USA 109(40):16167–16172. ISSN 00278424. https://doi.org/10.1073/pnas.1204114109

  13. Wan Y, Kertesz M, Spitale RC, Segal E, Chang HY (2011) Understanding the transcriptome through RNA structure. Nat Rev Genetics 12(9):641–655. ISSN 14710056. https://doi.org/10.1038/nrg3049

  14. Barrick JE, Breaker RR (2007) The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol 8(11). ISSN 14747596. https://doi.org/10.1186/gb-2007-8-11-r239

  15. Mortimer SA, Kidwell MA, Doudna JA (2014) Insights into RNA structure and function from genome-wide studies. Nat Rev Genet 15(7):469–479. ISSN 14710064. https://doi.org/10.1038/nrg3681

  16. Mathews DH (2019) How to benchmark RNA secondary structure prediction accuracy. Methods 162–163:60–67. ISSN 10959130. https://doi.org/10.1016/j.ymeth.2019.04.003

  17. Pipas JM, McMahon JE (1975) Method for predicting RNA secondary structure. Proc Nat Acad Sci 72(6):2017–2021. ISSN 0027-8424. https://doi.org/10.1073/pnas.72.6.2017

  18. Mathews DH, Turner DH (2006) Prediction of RNA secondary structure by free energy minimization. Curr Opin Struct Biol 16(3):270–278. ISSN 0959440X. https://doi.org/10.1016/j.sbi.2006.05.010

  19. Hajdin CE, Bellaousov S, Huggins W, Leonard CW, Mathews DH, Weeks KM (2013) Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots. Proc Nat Acad Sci 110(14):5498–5503. ISSN 0027-8424. https://doi.org/10.1073/pnas.1219988110

  20. Staple DW, Butcher SE (2005) Pseudoknots: RNA structures with diverse functions. PLoS Biol 3(6):0956–0959. ISSN 15449173. https://doi.org/10.1371/journal.pbio.0030213

  21. De Messieres M, Chang JC, Belew AT, Meskauskas A, Dinman JD, La Porta A (2014) Single-molecule measurements of the CCR5 mRNA unfolding pathways. Biophys J 106(1):244–252. https://doi.org/10.1016/j.bpj.2013.09.036

  22. Kames J, Holcomb DD, Kimchi O, DiCuccio M, Hamasaki-Katagiri N, Wang T, Komar AA, Alexaki A, Kimchi-Sarfaty C (2020) Sequence analysis of SARS-CoV-2 genome reveals features important for vaccine design. Sci Rep 10(15643)

    Google Scholar 

  23. Madhani HD, Guthrie C (1994) Dynamic RNA-RNA interactions in the spliceosome. Ann Rev Genet 28:1–26. ISSN 00664197. https://doi.org/10.1146/annurev.ge.28.120194.000245

  24. Paillart JC, Shehu-Xhilaga M, Marquet R, Mak J (2004) Dimerization of retroviral RNA genomes: an inseparable pair. Nat Rev Microbiol 2(6):461–472. ISSN 17401526. https://doi.org/10.1038/nrmicro903

  25. Paillart J-C, Skripkin E, Ehresmann B, Ehresmann C, Marquet R (1996) A loop-loop “kissing” complex is the essential part of the dimer linkage of genomic HIV-1 RNA. Proc Nat Acad Sci USA 93(May):5572–5577.

    Google Scholar 

  26. Kolb FA, Engdahl HM, Slagter-Jäger JG, Ehresmann B, Ehresmann C, Westhof E, Wagner EGH, Romby P (2000) Progression of a loop-loop complex to a four-way junction is crucial for the activity of a regulatory antisense RNA. EMBO J 19(21):5905–5915. ISSN 02614189. https://doi.org/10.1093/emboj/19.21.5905

  27. Kolb FA, Westhof E, Ehresmann B, Ehresmann C, Wagner EGH, Romby P (2001) Four-way junctions in antisense RNA-mRNA complexes involved in plasmid replication control: a common theme? J Mo Biol 309(3):605–614. ISSN 00222836. https://doi.org/10.1006/jmbi.2001.4677

  28. Bouchard P, Legault P (2014) A remarkably stable kissing-loop interaction defines substrate recognition by the Neurospora Varkud Satellite ribozyme. RNA 20(9):1451–1464. ISSN 14699001. https://doi.org/10.1261/rna.046144.114

  29. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucl Acids Res 31(13):3406–3415. ISSN 03051048. https://doi.org/10.1093/nar/gkg595

  30. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie 125(2): 167–188. ISSN 00269247. https://doi.org/10.1007/BF00818163

  31. Lyngsø RB, Pedersen CNS (2000) RNA pseudoknot prediction in energy-based models. J Comput Biol 7(3–4):409–427. ISSN 1066-5277. https://doi.org/10.1089/106652700750050862

  32. Rivas E, Eddy SR (1999) A dynamic programming algorithm for RNA structure prediction including pseudoknots. J Mol Biol 285(5):2053–2068. ISSN 0022-2836. https://doi.org/10.1006/jmbi.1998.2436

  33. Uemura Y, Hasegawa A, Kobayashi S, Yokomori T (1999) Tree adjoining grammars for RNA structure prediction. Theor Comput Sci 210(2):277–303. ISSN 03043975. https://doi.org/10.1016/S0304-3975(98)00090-5

  34. Akutsu T (2000) Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Appl Math 104(1–3):45–62. ISSN 0166218X. https://doi.org/10.1016/S0166-218X(00)00186-4

  35. Condon A, Davy B, Rastegari B, Zhao S, Tarrant F (2004) Classifying RNA pseudoknotted structures. Theor Comput Sci 320(1):35–50. ISSN 03043975. https://doi.org/10.1016/j.tcs.2004.03.042

  36. Dirks RM, Pierce NA (2003) A partition function algorithm for nucleic acid secondary structure including pseudoknots. J Comput Chem 24(13):1664–1677. ISSN 01928651. https://doi.org/10.1002/jcc.10296

  37. Reeder J, Giegerich R (2004) Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinform 5:1–12. ISSN 14712105. https://doi.org/10.1186/1471-2105-5-104

  38. Cao S, Chen SJ (2006) Predicting RNA pseudoknot folding thermodynamics. Nucl Acids Res 34(9):2634–2652. ISSN 03051048. https://doi.org/10.1093/nar/gkl346

  39. Cao S, Chen S-J (2009) Predicting structures and stabilities for H-type pseudoknots with interhelix loops. RNA 15(4):696–706. ISSN 1355-8382. https://doi.org/10.1261/rna.1429009

  40. Isambert H, Siggia ED (2000) Modeling RNA folding paths with pseudoknots: application to hepatitis delta virus ribozyme. Proc Nat Acad Sci 97(12):6515–6520. ISSN 0027-8424. https://doi.org/10.1073/pnas.110533697

  41. Ruan J, Stormo GD, Zhang W (2004) An Iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots. Bioinformatics 20(1):58–66. ISSN 13674803. https://doi.org/10.1093/bioinformatics/btg373

  42. Ren J, Rastegari B, Condon A, Hoos HH (2005) HotKnots : heuristic prediction of RNA secondary structures including pseudoknots HotKnots: heuristic prediction of RNA secondary structures including pseudoknots. RNA 11(1):1494–1504. https://doi.org/10.1261/rna.7284905.knots

  43. Bellaousov S, Mathews DH (2010) ProbKnot: fast prediction of RNA secondary structure including pseudoknots. RNA 16(10):1870–1880. ISSN 1355-8382. https://doi.org/10.1261/rna.2125310

  44. Sato K, Kato Y, Hamada M, Akutsu T, Asai K (2011) IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics 27(13):85–93. ISSN 13674803. https://doi.org/10.1093/bioinformatics/btr215

  45. Jabbari H, Condon A, Zhao S (2008) Novel and efficient RNA secondary structure prediction using hierarchical folding. J Comput Biol 15(2):139–163. ISSN 1066-5277. https://doi.org/10.1089/cmb.2007.0198

  46. Sperschneider J, Datta A, Wise MJ (2011) Heuristic RNA pseudoknot prediction including intramolecular kissing hairpins. RNA 17(1):27–38. ISSN 13558382. https://doi.org/10.1261/rna.2394511

  47. Bon M, Micheletti C, Orland H (2013) McGenus: a Monte Carlo algorithm to predict RNA secondary structures with pseudoknots. Nucl Acids Res 41(3):1895–1900. https://doi.org/10.1093/nar/gks1204

  48. Aalberts DP, Hodas NO (2005) Asymmetry in RNA pseudoknots: observation and theory. Nucl Acids Res 33(7):2210–2214. ISSN 03051048. https://doi.org/10.1093/nar/gki508

  49. Lucas A, Dill KA (2003) Statistical mechanics of pseudoknot polymers. J Chem Phys 119(4):2414–2421. ISSN 00219606. https://doi.org/10.1063/1.1587129

  50. Xayaphoummine A, Bucher T, Isambert H (2005) Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots. Nucl Acids Res 33(Suppl. 2):605–610. ISSN 03051048. https://doi.org/10.1093/nar/gki447

  51. Kucharík M, Hofacker IL, Stadler PF, Qin J (2015) Pseudoknots in RNA folding landscapes. Bioinformatics 32(2):187–194. ISSN 14602059. https://doi.org/10.1093/bioinformatics/btv572

  52. Kimchi O, Cragnolini T, Brenner MP, Colwell LJ (2019) A polymer physics framework for the entropy of arbitrary pseudoknots. Biophys J 117(3):520–532. ISSN 15420086. https://doi.org/10.1016/j.bpj.2019.06.037

  53. Xia T, SantaLucia J, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, Turner DH (1998) Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson–Crick base pairs. Biochemistry 37(42):14719–14735. ISSN 00062960. https://doi.org/10.1021/bi9809425

  54. Manyanga F, Horne MT, Brewood GP, Fish DJ, Dickman R, Benight AS (2009) Origins of the “Nucleation” free energy in the hybridization thermodynamics of short duplex DNA. J Phys Chem B 113(9):2556–2563. ISSN 15206106. https://doi.org/10.1021/jp809541m

  55. Nakano SI, Fujimoto M, Hara H, Sugimoto N (1999) Nucleic acid duplex stability: influence of base composition on cation effects. Nucl Acids Res 27(14):2957–2965. ISSN 03051048. https://doi.org/10.1093/nar/27.14.2957

  56. Sugimoto N, Nakano S-I, Katoh M, Matsumura A, Nakamuta H, Ohmichi T, Yoneyama M, Sasaki M (1995) Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 34(35):11211–11216. ISSN 15204995. https://doi.org/10.1021/bi00035a029

  57. Sugimoto N, Nakano SI, Yoneyama M, Honda KI (1996) Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucl Acids Res 24(22):4501–4505. ISSN 03051048. https://doi.org/10.1093/nar/24.22.4501

  58. SantaLucia J, Allawi HT, Seneviratne PA (1996) Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry 35(11):3555–3562. ISSN 00062960. https://doi.org/10.1021/bi951907q

  59. Aalberts DP, Parman JM, Goddard NL (2003) Single-strand stacking free energy from DNA beacon kinetics. Biophys J 84(5):3212–3217. ISSN 00063495. https://doi.org/10.1016/S0006-3495(03)70045-9

  60. Srinivas N, Ouldridge TE, Šulc P, Schaeffer JM, Yurke B, Louis AA, Doye JP, Winfree E (2013) On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucl Acids Res 41(22):10641–10658. ISSN 03051048. https://doi.org/10.1093/nar/gkt801

  61. Xia T, Mathews DH, Turner DH (2001) Thermodynamics of RNA secondary structure formation. In: Soll D, Nishimura S, Moore PB (eds) RNA, chapter 2. Pergamon, 1st edn. pp 21–48 https://doi.org/10.1002/(sici)1097-0282(1997)44:3%3C309::aid-bip8%3E3.0.co;2-z

  62. Andronescu M, Zhang ZC, Condon A (2005) Secondary structure prediction of interacting RNA molecules. J Mol Biol 345(5):987–1001. ISSN 00222836. https://doi.org/10.1016/j.jmb.2004.10.082

  63. Turner DH, Mathews DH (2009) NNDB: The nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucl Acids Res 38(Suppl.1):2009–2011. ISSN 03051048. https://doi.org/10.1093/nar/gkp892

  64. SantaLucia J, Hicks D (2004) The thermodynamics of DNA structural motifs. Ann Rev Biophys Biomol Struct 33(1):415–440. ISSN 1056-8700. https://doi.org/10.1146/annurev.biophys.32.110601.141800

  65. Turner DH (2000) Conformational changes. In: Bloomfield VA, Crothers DM, Tinoco I (eds) Nucleic acids: structures, properties, and functions, chapter 8. University Science Books, Sausalito, pp 271–291. ISBN 0935702490

    Google Scholar 

  66. Dirks RM, Bois JS, Schaeffer JM, Winfree E, Pierce NA (2007) Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev 49(1):65–88. ISSN 00361445. https://doi.org/10.1137/060651100

  67. Serra MJ, Turner DH (1995) Predicting thermodynamic properties of RNA. Methods Enzymol 259:242–261.

    Google Scholar 

  68. Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic paramenters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Google Scholar 

  69. Allawi HT, SantaLucia J (1997) Thermodynamics and NMR of internal G·T mismatches in DNA. Biochemistry 36(34):10581–10594. ISSN 00062960. https://doi.org/10.1021/bi962590c

  70. Allawi HT, SantaLucia J (1998) Nearest-neighbor thermodynamics of internal A·C mismatches in DNA: sequence dependence and pH effects. Biochemistry 37(26):9435–9444. ISSN 00062960. https://doi.org/10.1021/bi9803729

  71. Allawi HT, SantaLucia J (1998) Nearest neighbor thermodynamic parameters for internal G·A mismatches in DNA. Biochemistry 37(8):2170–2179. ISSN 00062960. https://doi.org/10.1021/bi9724873

  72. Allawi HT, SantaLucia J (1998) Thermodynamics of internal C·T mismatches in DNA. Nucl Acids Res 26(11):2694–2701. ISSN 03051048. https://doi.org/10.1093/nar/26.11.2694

  73. Peyret N, Seneviratne PA, Allawi HT, SantaLucia J (1999) Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A·A, C·C, G·G, and T·T mismatches. Biochemistry 38(12):3468–3477. ISSN 00062960. https://doi.org/10.1021/bi9825091

  74. Watkins NE, Kennelly WJ, Tsay MJ, Tuin A, Swenson L, Lee HR, Morosyuk S, Hicks DA, SantaLucia J (2011) Thermodynamic contributions of single internal rA·dA, rC·dC, rG·dG and rU·dT mismatches in RNA/DNA duplexes. Nucl Acids Res 39(5):1894–1902. ISSN 03051048. https://doi.org/10.1093/nar/gkq905

  75. Bommarito S, Peyret N, SantaLucia J (2000) Thermodynamic parameters for DNA sequences with dangling ends. Nucl Acids Res 28(9):1929–1934. ISSN 03051048. https://doi.org/10.1093/nar/28.9.1929

  76. Lu ZJ, Turner DH, Mathews DH (2006) A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation. Nucl Acids Res 34(17):4912–4924. ISSN 03051048. https://doi.org/10.1093/nar/gkl472

  77. Xu ZZ, Mathews DH (2016) Secondary structure prediction of single sequences using RNAstructure. In: Turner DH, Mathews DH (eds) Methods in molecular biology. RNA structure determination, vol 1490, chapter 2. Humana Press, New York, pp 15–35. ISBN 978-1-4939-6431-4. https://doi.org/10.1007/978-1-4939-6433-8

  78. Jacobson DR, McIntosh DB, Saleh OA (2013) The snakelike chain character of unstructured RNA. Biophys J 105(11):2569–2576. ISSN 00063495. https://doi.org/10.1016/j.bpj.2013.10.019

  79. Chen H, Meisburger SP, Pabit SA, Sutton JL, Webb WW, Pollack L (2012) Ionic strength-dependent persistence lengths of single-stranded RNA and DNA. Proc Nat Acad Sci USA 109(3):799–804. ISSN 00278424. https://doi.org/10.1073/pnas.1119057109

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofer Kimchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kimchi, O., Brenner, M.P., Colwell, L.J. (2023). Nucleic Acid Structure Prediction Including Pseudoknots Through Direct Enumeration of States: A User’s Guide to the LandscapeFold Algorithm. In: Kawaguchi, R.K., Iwakiri, J. (eds) RNA Structure Prediction. Methods in Molecular Biology, vol 2586. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2768-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2768-6_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2767-9

  • Online ISBN: 978-1-0716-2768-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics