Skip to main content

Introduction to West Nile Virus

  • Protocol
  • First Online:
West Nile Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2585))

Abstract

West Nile virus (WNV) is a mosquito-borne, single-stranded, positive-sense RNA virus belonging to the Flaviviridae family. After WNV gains entry through an infected mosquito bite, it replicates in a variety of human cell types and produces a viremia. Although the majority of infected individuals remain asymptomatic, the manifested symptoms in some people range from a mild fever to severe neurological disorder with high morbidity and mortality. In addition, many who recover from WNV neuroinvasive infection present with long-term deficits, including weakness, fatigue, and cognitive problems. Since entering the USA in 1999, WNV has become the most common mosquito-borne virus in North America. Despite the intensive research over 20 years, there are still no approved vaccines or specific treatments for humans, and it remains an urgent need to understand the pathogenesis of WNV and develop specific therapeutics and vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mukhopadhyay S, Kim BS, Chipman PR et al (2003) Structure of West Nile virus. Science 302(5643):248. https://doi.org/10.1126/science.1089316

    Article  CAS  PubMed  Google Scholar 

  2. Markoff L (2003) 5′- and 3′-noncoding regions in flavivirus RNA. Adv Virus Res 59:177–228. https://doi.org/10.1016/s0065-3527(03)59006-6

    Article  CAS  PubMed  Google Scholar 

  3. Friebe P, Harris E (2010) Interplay of RNA elements in the dengue virus 5′ and 3′ ends required for viral RNA replication. J Virol 84(12):6103–6118. https://doi.org/10.1128/JVI.02042-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khromykh AA, Meka H, Guyatt KJ et al (2001) Essential role of cyclization sequences in flavivirus RNA replication. J Virol 75(14):6719–6728. https://doi.org/10.1128/JVI.75.14.6719-6728.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shi PY, Brinton MA, Veal JM et al (1996) Evidence for the existence of a pseudoknot structure at the 3′ terminus of the flavivirus genomic RNA. Biochemistry 35(13):4222–4230. https://doi.org/10.1021/bi952398v

    Article  CAS  PubMed  Google Scholar 

  6. Acharya D, Bai F (2016) An overview of current approaches toward the treatment and prevention of West Nile virus infection. Methods Mol Biol 1435:249–291. https://doi.org/10.1007/978-1-4939-3670-0_19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bai F, Thompson EA (2021) West Nile Virus (Flaviviridae). In: Bamford DH, Zuckerman M (eds) Encyclopedia of virology, 4th edn. Academic Press, Oxford, pp 884–890. https://doi.org/10.1016/B978-0-12-809633-8.21504-5

    Chapter  Google Scholar 

  8. Westaway EG, Mackenzie JM, Khromykh AA et al (2002) Replication and gene function in Kunjin virus. Curr Top Microbiol Immunol 267:323–351. https://doi.org/10.1007/978-3-642-59403-8_16

    Article  CAS  PubMed  Google Scholar 

  9. Bai F, Town T, Pradhan D et al (2007) Antiviral peptides targeting the West Nile virus envelope protein. J Virol 81(4):2047–2055. https://doi.org/10.1128/JVI.01840-06

    Article  CAS  PubMed  Google Scholar 

  10. Grant D, Tan GK, Qing M et al (2011) A single amino acid in nonstructural protein NS4B confers virulence to dengue virus in AG129 mice through enhancement of viral RNA synthesis. J Virol 85(15):7775–7787. https://doi.org/10.1128/JVI.00665-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wicker JA, Whiteman MC, Beasley DW et al (2006) A single amino acid substitution in the central portion of the West Nile virus NS4B protein confers a highly attenuated phenotype in mice. Virology 349(2):245–253. https://doi.org/10.1016/j.virol.2006.03.007

    Article  CAS  PubMed  Google Scholar 

  12. Xie X, Wang QY, Xu HY et al (2011) Inhibition of dengue virus by targeting viral NS4B protein. J Virol 85(21):11183–11195. https://doi.org/10.1128/JVI.05468-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ramanathan MP, Chambers JA, Pankhong P et al (2006) Host cell killing by the West Nile virus NS2B-NS3 proteolytic complex: NS3 alone is sufficient to recruit caspase-8-based apoptotic pathway. Virology 345(1):56–72. https://doi.org/10.1016/j.virol.2005.08.043

    Article  CAS  PubMed  Google Scholar 

  14. Lindenbach BD, Rice CM (2001) Flaviviridae: the viruses and their replication. Fields’ Virol, 4th ed., pp. 991–1110

    Google Scholar 

  15. Ray D, Shah A, Tilgner M et al (2006) West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. J Virol 80(17):8362–8370. https://doi.org/10.1128/JVI.00814-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tan BH, Fu J, Sugrue RJ et al (1996) Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli exhibits RNA-dependent RNA polymerase activity. Virology 216(2):317–325. https://doi.org/10.1006/viro.1996.0067

    Article  CAS  PubMed  Google Scholar 

  17. Henderson BR, Saeedi BJ, Campagnola G et al (2011) Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme. PLoS One 6(10):e25795. https://doi.org/10.1371/journal.pone.0025795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Keating JA, Bhattacharya D, Lim PY et al (2013) West Nile virus methyltransferase domain interacts with protein kinase G. Virol J 10:242. https://doi.org/10.1186/1743-422X-10-242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smithburn KC, Hughes TP, Burke AW et al (1940) A neurotropic virus isolated from the blood of a native of Uganda. Am J Trop Med 20:471–472. https://doi.org/10.4269/ajtmh.1940.s1-20.471

    Article  Google Scholar 

  20. Bai F, Thompson EA, Vig PJS et al (2019) Current understanding of West Nile virus clinical manifestations, immune responses, Neuroinvasion, and immunotherapeutic implications. Pathogens. https://doi.org/10.3390/pathogens8040193

  21. Spigland I, Jasinska-Klingberg W, Hofshi E et al (1958) Clinical and laboratory observations in an outbreak of West Nile fever in Israel in 1957. Harefuah 54(11):275–280. PMID: 13562703

    CAS  PubMed  Google Scholar 

  22. Murgue B, Murri S, Triki H et al (2001) West Nile in the Mediterranean basin: 1950-2000. Ann N Y Acad Sci 951:117–126. https://doi.org/10.1111/j.1749-6632.2001.tb02690.x

    Article  CAS  PubMed  Google Scholar 

  23. Bin H, Grossman Z, Pokamunski S et al (2001) West Nile fever in Israel 1999-2000: from geese to humans. Ann N Y Acad Sci 951:127–142. https://doi.org/10.1111/j.1749-6632.2001.tb02691.x

    Article  CAS  PubMed  Google Scholar 

  24. Tsai TF, Popovici F, Cernescu C et al (1998) West Nile encephalitis epidemic in southeastern Romania. Lancet 352(9130):767–771. https://doi.org/10.1016/s0140-6736(98)03538-7

    Article  CAS  PubMed  Google Scholar 

  25. Gubler DJ (2007) The continuing spread of West Nile virus in the western hemisphere. Clin Infect Dis 45(8):1039–1046. https://doi.org/10.1086/521911

    Article  PubMed  Google Scholar 

  26. Mann BR, McMullen AR, Swetnam DM et al (2013) Molecular epidemiology and evolution of West Nile virus in North America. Int J Environ Res Public Health 10(10):5111–5129. https://doi.org/10.3390/ijerph10105111

    Article  PubMed  PubMed Central  Google Scholar 

  27. Centers for Disease Control and Prevention (CDC). West Nile virus disease cases and deaths reported to CDC by year and clinical presentation, 1999–2020. https://www.cdc.gov/westnile/statsmaps/cumMapsData.html

  28. West Nile virus and other arboviral diseases-United States, 2012 (2013) MMWR Morb Mortal Wkly Rep 62(25):513–517. PMID: 23803959

    Google Scholar 

  29. Chancey C, Grinev A, Volkova E et al (2015) The global ecology and epidemiology of West Nile virus. Biomed Res Int 376230. https://doi.org/10.1155/2015/376230

  30. Kaiser JA, Barrett ADT (2019) Twenty years of progress toward West Nile virus vaccine development. Viruses 11(9):823. https://doi.org/10.3390/v11090823

    Article  CAS  PubMed Central  Google Scholar 

  31. Kilpatrick AM, Daszak P, Jones MJ et al (2006) Host heterogeneity dominates West Nile virus transmission. Proc Biol Sci 273(1599):2327–2333. https://doi.org/10.1098/rspb.2006.3575

    Article  PubMed  Google Scholar 

  32. Reisen WK, Fang Y, Martinez VM et al (2005) Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St. Louis encephalitis virus transmission. J Med Entomol 42(3):367–375. https://doi.org/10.1093/jmedent/42.3.367

    Article  CAS  PubMed  Google Scholar 

  33. Kilpatrick AM, Kramer LD, Jones MJ et al (2006) West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4(4):e82. https://doi.org/10.1371/journal.pbio.0040082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hamer GL, Kitron UD, Goldberg TL et al (2009) Host selection by Culex pipiens mosquitoes and West Nile virus amplification. Am J Trop Med Hyg 80(2):268–278. PMID: 19190226

    Article  PubMed  Google Scholar 

  35. Bowen RA, Nemeth NM (2007) Experimental infections with West Nile virus. Curr Opin Infect Dis 20(3):293–297. https://doi.org/10.1097/QCO.0b013e32816b5cad

    Article  PubMed  Google Scholar 

  36. Johnston LJ, Halliday GM, King NJ (2000) Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus. J Invest Dermatol 114(3):560–568. https://doi.org/10.1046/j.1523-1747.2000.00904.x

    Article  CAS  PubMed  Google Scholar 

  37. Kovats S, Turner S, Simmons A et al (2016) West Nile virus-infected human dendritic cells fail to fully activate invariant natural killer T cells. Clin Exp Immunol 186(2):214–226. https://doi.org/10.1111/cei.12850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qian F, Wang X, Zhang L et al (2011) Impaired interferon signaling in dendritic cells from older donors infected in vitro with West Nile virus. J Infect Dis 203(10):1415–1424. https://doi.org/10.1093/infdis/jir048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health R15AI135893 (F.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengwei Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Karim, SU., Bai, F. (2023). Introduction to West Nile Virus. In: Bai, F. (eds) West Nile Virus. Methods in Molecular Biology, vol 2585. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2760-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2760-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2759-4

  • Online ISBN: 978-1-0716-2760-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics