Skip to main content

Flow Cytometry and Cell Cycle Analysis: An Overview

  • Protocol
  • First Online:
Cell-Cycle Synchronization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2579))

Abstract

Cell cycle analysis is one of the earliest applications in flow cytometry and continues to be highly used to this day. Since the first reported method of Feulgen-DNA staining, cell cycle analysis has continued to grow and mature. With the recent advances in DNA dyes, understanding of additional cell cycle phase markers, and new technologies, cell cycle analysis continues to be a dynamic field within the flow cytometry community. This chapter will give an overview of the current state of cell cycle analysis by flow cytometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shankey TV, Rabinovitch PS, Bagwell B et al (1993) Guidelines for the implementation of clinical DNA cytometry. Breast Cancer Res Treat 28:61–68

    Article  Google Scholar 

  2. Kim KH, Sederstrom JM (2015) Assaying cell cycle status using flow cytometry. Curr Protoc Mol Biol 111:28.6.1–28.6.11

    Article  Google Scholar 

  3. Van Dilla MA, Trujillo TT, Mullaney PF et al (1969) Cell microfluorometry: a method for rapid fluorescence measurement. Science 163:1213–1214

    Article  PubMed  Google Scholar 

  4. Darzynkiewicz Z, Crissman H, Jacobberger JW (2004) Cytometry of the cell cycle: cycling through history. Cytom Part J Int Soc Anal Cytol 58:21–32

    Google Scholar 

  5. Crissman HA, Steinkamp JA (1973) Rapid, simultaneous measurement of DNA, protein, and cell volume in single cells from large mammalian cell populations. J Cell Biol 59:766–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Krishan A (1975) Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 66:188–193

    Article  CAS  PubMed  Google Scholar 

  7. Rosenberg M, Azevedo NF, Ivask A (2019) Propidium iodide staining underestimates viability of adherent bacterial cells. Sci Rep 9:6483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Stöhr M, Eipel H, Goerttler K et al (1977) Extended application of flow microfluorometry by means of dual laser excitation. Histochemistry 51:305–313

    Article  PubMed  Google Scholar 

  9. Kapuściński J, Yanagi K (1979) Selective staining by 4′, 6-diamidine-2-phenylindole of nanogram quantities of DNA in the presence of RNA on gels. Nucleic Acids Res 6:3535–3542

    Article  PubMed  PubMed Central  Google Scholar 

  10. Darzynkiewicz Z, Traganos F, Kapuscinski J et al (1984) Accessibility of DNA in situ to various fluorochromes: relationship to chromatin changes during erythroid differentiation of friend leukemia cells. Cytometry 5:355–363

    Article  CAS  PubMed  Google Scholar 

  11. Lewalski H, Otto FJ, Kranert T et al (1993) Flow cytometric detection of unbalanced ram spermatozoa from heterozygous 1;20 translocation carriers. Cytogenet Cell Genet 64:286–291

    Article  CAS  PubMed  Google Scholar 

  12. Otto F, Tsou KC (1985) A comparative study of DAPI, DIPI, and Hoechst 33258 and 33342 as chromosomal DNA stains. Stain Technol 60:7–11

    Article  CAS  PubMed  Google Scholar 

  13. Arndt-Jovin DJ, Jovin TM (1977) Analysis and sorting of living cells according to deoxyribonucleic acid content. J Histochem Cytochem Off J Histochem Soc 25:585–589

    Article  CAS  Google Scholar 

  14. Bucevičius J, Lukinavičius G, Gerasimaitė R (2018) The use of Hoechst dyes for DNA staining and beyond. Chemosensors 6:18

    Article  CAS  Google Scholar 

  15. Smith PJ, Wiltshire M, Davies S et al (1999) A novel cell permeant and far red-fluorescing DNA probe, DRAQ5, for blood cell discrimination by flow cytometry. J Immunol Methods 229:131–139

    Article  CAS  PubMed  Google Scholar 

  16. Yuan CM, Douglas-Nikitin VK, Ahrens KP et al (2004) DRAQ5-based DNA content analysis of hematolymphoid cell subpopulations discriminated by surface antigens and light scatter properties. Cytometry B Clin Cytom 58:47–52

    Article  PubMed  CAS  Google Scholar 

  17. Bradford JA, Whitney P, Huang T et al (2006) Novel Vybrant® DyeCycle ™ stains provide cell cycle analysis in live cells using flow cytometry with violet, blue, and green excitation. Blood 108:4234

    Article  Google Scholar 

  18. Haase SB (2004) Cell cycle analysis of budding yeast using SYTOX Green. Curr Protoc Cytom Chapter 7:Unit 7.23

    PubMed  Google Scholar 

  19. Tembhare P, Badrinath Y, Ghogale S et al (2016) A novel and easy FxCycle™ violet based flow cytometric method for simultaneous assessment of DNA ploidy and six-color immunophenotyping. Cytometry A 89:281–291

    Article  CAS  PubMed  Google Scholar 

  20. Cavanagh BL, Walker T, Norazit A et al (2011) Thymidine analogues for tracking DNA synthesis. Molecules 16:7980–7993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gratzner HG (1982) Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 218:474–475

    Article  CAS  PubMed  Google Scholar 

  22. Darzynkiewicz Z, Huang X, Zhao H (2017) Analysis of cellular DNA content by flow cytometry. Curr Protoc Immunol 119:5.7.1–5.7.20

    Article  CAS  Google Scholar 

  23. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105:2415–2420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Buck SB, Bradford J, Gee KR et al (2008) Detection of S-phase cell cycle progression using 5-ethynyl-2′-deoxyuridine incorporation with click chemistry, an alternative to using 5-bromo-2′-deoxyuridine antibodies. BioTechniques 44:927–929

    Article  CAS  PubMed  Google Scholar 

  25. Gerdes J, Lemke H, Baisch H et al (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol Baltim Md 1950 133:1710–1715

    CAS  Google Scholar 

  26. Gerdes J, Schwab U, Lemke H et al (1983) Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer 31:13–20

    Article  CAS  PubMed  Google Scholar 

  27. Sherr CJ (2000) The Pezcoller lecture: cancer cell cycles revisited. Cancer Res 60:3689–3695

    CAS  PubMed  Google Scholar 

  28. Darzynkiewicz Z, Gong J, Juan G et al (1996) Cytometry of cyclin proteins. Cytometry 25:1–13

    Article  CAS  PubMed  Google Scholar 

  29. Davidson EJ, Morris LS, Scott IS et al (2003) Minichromosome maintenance (Mcm) proteins, cyclin B1 and D1, phosphohistone H3 and in situ DNA replication for functional analysis of vulval intraepithelial neoplasia. Br J Cancer 88:257–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Juan G, Traganos F, James WM et al (1998) Histone H3 phosphorylation and expression of cyclins A and B1 measured in individual cells during their progression through G2 and mitosis. Cytometry 32:71–77

    Article  CAS  PubMed  Google Scholar 

  31. Ward MD, Kaduchak G (2018) Fundamentals of acoustic cytometry. Curr Protoc Cytom 84:e36

    PubMed  Google Scholar 

  32. Suthanthiraraj PPA, Graves SW (2013) Fluidics. Curr Protoc Cytom Editor Board J Paul Robinson Manag Ed Al 0 1:Unit-1.2

    Google Scholar 

  33. Flegel K, Sun D, Grushko O et al (2013) Live cell cycle analysis of drosophila tissues using the attune acoustic focusing cytometer and vybrant DyeCycle Violet DNA stain. J Vis Exp 75:e50239

    Google Scholar 

  34. Mori R, Matsuya Y, Yoshii Y et al (2018) Estimation of the radiation-induced DNA double-strand breaks number by considering cell cycle and absorbed dose per cell nucleus. J Radiat Res (Tokyo) 59:253–260

    Article  CAS  Google Scholar 

  35. Basiji DA, Ortyn WE, Liang L et al (2007) Cellular image analysis and imaging by flow cytometry. Clin Lab Med 27:653–670

    Article  PubMed  PubMed Central  Google Scholar 

  36. Blasi T, Hennig H, Summers HD et al (2016) Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nat Commun 7:10256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Filby A, Perucha E, Summers H et al (2011) An imaging flow cytometric method for measuring cell division history and molecular symmetry during mitosis. Cytometry A 79A:496–506

    Article  Google Scholar 

  38. Patterson JO, Swaffer M, Filby A (2015) An imaging flow cytometry-based approach to analyse the fission yeast cell cycle in fixed cells. Methods 82:74–84

    Article  CAS  PubMed  Google Scholar 

  39. Behbehani GK, Bendall SC, Clutter MR et al (2012) Single-cell mass cytometry adapted to measurements of the cell cycle. Cytom Part J Int Soc Anal Cytol 81:552–566

    Article  Google Scholar 

  40. Rein ID, Notø HØ, Bostad M et al (2020) Cell cycle analysis and relevance for single-cell gating in mass cytometry. Cytom Part J Int Soc Anal Cytol 97:832–844

    Article  CAS  Google Scholar 

  41. Behbehani GK (2018) Cell cycle analysis by mass cytometry. Methods Mol Biol Clifton NJ 1686:105–124

    Article  CAS  Google Scholar 

  42. Everitt B (1998) The Cambridge dictionary of statistics. Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo Cambridge University Press, The Edinburgh Building, Cambridge CB2 8RU, UK

    Google Scholar 

  43. Misra RK, Easton MDL (1999) Comment on analyzing flow cytometric data for comparison of mean values of the coefficient of variation of the G1 peak. Cytometry 36:112–116

    Article  CAS  PubMed  Google Scholar 

  44. Cossarizza A, Chang H-D, Radbruch A et al (2019) Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur J Immunol 49:1457–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jacobberger JW (2001) Chapter 13 stoichiometry of immunocytochemical staining reactions, Methods in cell biology, Academic Press, 63, Part A, 271–298, ISSN 0091-679X, ISBN 9780125441667, https://doi.org/10.1016/S0091-679X(01)63017-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aja M. Rieger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rieger, A.M. (2022). Flow Cytometry and Cell Cycle Analysis: An Overview. In: Wang, Z. (eds) Cell-Cycle Synchronization. Methods in Molecular Biology, vol 2579. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2736-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2736-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2735-8

  • Online ISBN: 978-1-0716-2736-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics