Skip to main content

Assay of Endocannabinoid Uptake

  • Protocol
  • First Online:
Endocannabinoid Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2576))

Abstract

Endocannabinoids at nanomolar physiological concentrations cross cellular membranes by facilitated diffusion, a process that can be studied by measuring transport kinetics and endocannabinoid trafficking employing radioligands and mass spectrometry. Here, we describe radiosubstrate-based assays using arachidonoyl[1-3H]ethanolamine and 2-arachidonoyl[1,2,3-3H]glycerol to measure cellular endocannabinoid uptake in a three-phase assay with human U937 cells. Liquid chromatography–electrospray ionization–mass spectrometry (LC–ESI–MS/MS)-based lipidomics was used to interrogate the roles of serum and albumin for endocannabinoid trafficking in U937 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nicolussi S, Gertsch JJ (2015) Endocannabinoid transport revisited. Vitam Horm 98:441–485

    Article  CAS  Google Scholar 

  2. Fowler CJ, Tiger G, Ligresti A et al (2004) Selective inhibition of anandamide cellular uptake versus enzymatic hydrolysis—a difficult issue to handle. Eur J Pharmacol 492:1–11

    Article  CAS  Google Scholar 

  3. Oddi S, Fezza F, Catanzaro G et al (2010) Pitfalls and solutions in assaying anandamide transport in cells. J Lipid Res 51:2435–2444

    Article  CAS  Google Scholar 

  4. Nicolussi S, Chicca A, Rau M et al (2014) Correlating FAAH and anandamide cellular uptake inhibition using N-alkylcarbamate inhibitors: From ultrapotent to hyperpotent. Biochem Pharmacol 92:669–689

    Article  CAS  Google Scholar 

  5. Fowler CJ (2013) Transport of endocannabinoids across the plasma membrane and within the cell. FEBS J 280:1895–1904

    Article  CAS  Google Scholar 

  6. Felder CC, Dickason-chesterfield AK, Moore SA (2006) Cannabinoid Biology The Search for New Therapeutic Targets. Rev Lit Arts Am 6:149–161

    CAS  Google Scholar 

  7. Chicca A, Marazzi J, Nicolussi S et al (2012) Evidence for bidirectional endocannabinoid transport across cell membranes. J Biol Chem 287:34660–34682

    Article  CAS  Google Scholar 

  8. Nicolussi S, Viveros-Paredes JM, Gachet MS et al (2014) Guineensine is a novel inhibitor of endocannabinoid uptake showing cannabimimetic behavioral effects in BALB/c mice. Pharmacol Res 80:52–65

    Article  CAS  Google Scholar 

  9. Chicca A, Nicolussi S, Bartholomäus R et al (2017) Chemical probes to potently and selectively inhibit endocannabinoid cellular reuptake. Proc Natl Acad Sci U S A 114:E5006–E5015

    Article  CAS  Google Scholar 

  10. Reynoso-Moreno I, Chicca A, Flores-Soto ME et al (2018) The endocannabinoid reuptake inhibitor WOBE437 is orally bioavailable and exerts indirect polypharmacological effects via different endocannabinoid receptors. Front Mol Neurosci 11:180

    Article  Google Scholar 

  11. Reynoso-Moreno I, Tietz S, Vallini E et al (2021) Selective endocannabinoid reuptake inhibitor WOBE437 reduces disease progression in a mouse model of multiple sclerosis. ACS Pharmacol Transl Sci 4:765–779

    Article  CAS  Google Scholar 

  12. Ahn K, McKinney M, Cravatt B (2008) Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem Rev 108:1687–1707

    Article  CAS  Google Scholar 

  13. Gibellini F, Smith TK (2010) The Kennedy pathway--De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62:414–428

    Article  CAS  Google Scholar 

  14. Madeira A, Moura TF, Soveral G (2015) Aquaglyceroporins: implications in adipose biology and obesity. Cell Mol Life Sci 72:759–771

    Article  CAS  Google Scholar 

  15. Cravatt BFB, Giang DK, Mayfield SP et al (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83

    Article  CAS  Google Scholar 

  16. Gulyas AI, Cravatt BF, Bracey MH et al (2004) Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur J Neurosci 20:441–458

    Article  CAS  Google Scholar 

  17. Blankman J, Simon G, Cravatt B (2007) A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol 14:1347–1356

    Article  CAS  Google Scholar 

  18. Muccioli GG, Xu C, Odah E et al (2007) Identification of a novel endocannabinoid-hydrolyzing enzyme expressed by microglial cells. J Neurosci 27:2883–2889

    Article  CAS  Google Scholar 

  19. Beltramo M, Piomelli D (2000) Carrier-mediated transport and enzymatic hydrolysis of the endogenous cannabinoid 2-arachidonylglycerol. Neuroreport 11:1231–1235

    Article  CAS  Google Scholar 

  20. Oddi S, Fezza F, Pasquariello N et al (2009) Molecular identification of albumin and Hsp70 as cytosolic anandamide-binding proteins. Chem Biol 16:624–632

    Article  CAS  Google Scholar 

  21. Bojesen IN, Hansen HS (2003) Binding of anandamide to bovine serum albumin. J Lipid Res 44:1790–1794

    Article  CAS  Google Scholar 

  22. Marazzi J, Kleyer J, Paredes JMV et al (2011) Endocannabinoid content in fetal bovine sera - unexpected effects on mononuclear cells and osteoclastogenesis. J Immunol Methods 373:219–228

    Article  CAS  Google Scholar 

  23. Kaczocha M, Glaser ST, Deutsch DG (2009) Identification of intracellular carriers for the endocannabinoid anandamide. Proc Natl Acad Sci U S A 106:6375–6380

    Article  CAS  Google Scholar 

  24. Hajdu Z, Nicolussi S, Rau M et al (2014) Identification of Endocannabinoid system-modulating N -alkylamides from heliopsis helianthoides var. scabra and lepidium meyenii. J Nat Prod 77:1663–1669

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg Gertsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Reynoso-Moreno, I., Rau, M., Chicca, A., Nicolussi, S., Gertsch, J. (2023). Assay of Endocannabinoid Uptake. In: Maccarrone, M. (eds) Endocannabinoid Signaling. Methods in Molecular Biology, vol 2576. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2728-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2728-0_28

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2727-3

  • Online ISBN: 978-1-0716-2728-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics