Skip to main content

Locked Nucleic Acid AntimiR Therapy for the Heart

  • Protocol
  • First Online:
Cardiac Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2573))

Abstract

Coronary heart disease is one of the leading causes of death in industrialized nations. Even though revascularization strategies improved the outcome of patients after acute myocardial infarction, about 30% of patients develop chronic heart failure. Ischemic heart disease and heart failure are characterized by an adverse remodeling of the heart, featuring cardiomyocyte hypertrophy, increased fibrosis, and capillary rarefaction. Therefore, novel therapeutic approaches for the treatment of heart failure, such as reducing ischemia/reperfusion injury, fibrosis, or hypertrophy, are needed. Here microRNAs (miRNAs) come into play. For heart failure, cardiac stress and several cardiovascular diseases, individual miRNAs, and whole miRNA clusters have been implicated as disease relevant and dysregulated. miRNAs are short non-coding RNA molecules of about 22 nucleotides, and their inhibitors are 8–15 nucleotides long plus a sugar-ring (LNA, locked nucleid acid) or cholesterol ending (AntagomiR). Modulation of miRNAs might serve as therapeutic targets through miRNA knockdown or overexpression via miRNA mimics. Due to their pleiotropic mode of action and the presence of individual miRNAs in a variety of tissues and cells, a local, target region-oriented application is important to achieve therapeutic effects and at the same time reducing adverse effects in other off-target organs and tissues. Due to their small size, the miRNA inhibitors are able to pass endothelial barrier at both arterial and venous sides of the bloodstream vessels. For these reasons, the gold standard administration route of miRNA modulators for therapeutic approaches of the left ventricle is the anterograde application into one or both coronary arteries via an over-the-wire (OTW) balloon. In this chapter we provide a comprehensive description of the anterograde application procedure in a large animal model such as pig. Of a particular note, this methodology is a standard procedure in catheter laboratories, a key characteristic that allows therapeutic translation from large animals to patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854. https://doi.org/10.1016/0092-8674(93)90529-y

    Article  CAS  Google Scholar 

  2. Huang CK, Kafert-Kasting S, Thum T (2020) Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease. Circ Res 126(5):663–678. https://doi.org/10.1161/circresaha.119.315856

    Article  CAS  Google Scholar 

  3. Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M, Watanabe S, Baba O, Kojima Y, Shizuta S, Imai M, Tamura T, Kita T, Kimura T (2011) Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 4(4):446–454. https://doi.org/10.1161/circgenetics.110.958975

    Article  CAS  Google Scholar 

  4. Divakaran V, Mann DL (2008) The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res 103(10):1072–1083. https://doi.org/10.1161/circresaha.108.183087

    Article  CAS  Google Scholar 

  5. Ye Y, Perez-Polo JR, Qian J, Birnbaum Y (2011) The role of microRNA in modulating myocardial ischemia-reperfusion injury. Physiol Genomics 43(10):534–542. https://doi.org/10.1152/physiolgenomics.00130.2010

    Article  CAS  Google Scholar 

  6. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, Chavakis E, Potente M, Tjwa M, Urbich C, Zeiher AM, Dimmeler S (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324(5935):1710–1713. https://doi.org/10.1126/science.1174381

    Article  CAS  Google Scholar 

  7. Wehbe N, Nasser SA, Pintus G, Badran A, Eid AH, Baydoun E (2019) MicroRNAs in cardiac hypertrophy. Int J Mol Sci 20(19):4714. https://doi.org/10.3390/ijms20194714

    Article  CAS  Google Scholar 

  8. Wang J, Liew OW, Richards AM, Chen Y-T (2016) Overview of MicroRNAs in cardiac hypertrophy, fibrosis, and apoptosis. Int J Mol Sci 17(5):749. https://doi.org/10.3390/ijms17050749

    Article  CAS  Google Scholar 

  9. Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM, Dalby CM, Robinson K, Stack C, Latimer PA, Hare JM, Olson EN, van Rooij E (2012) Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 110(1):71–81. https://doi.org/10.1161/circresaha.111.244442

    Article  CAS  Google Scholar 

  10. Hinkel R, Penzkofer D, Zühlke S, Fischer A, Husada W, Xu QF, Baloch E, van Rooij E, Zeiher AM, Kupatt C, Dimmeler S (2013) Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation 128(10):1066–1075. https://doi.org/10.1161/circulationaha.113.001904

    Article  CAS  Google Scholar 

  11. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9(402). https://doi.org/10.3389/fendo.2018.00402

  12. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689. https://doi.org/10.1038/nature04303

    Article  CAS  Google Scholar 

  13. Bernardo BC, Charchar FJ, Lin RC, McMullen JR (2012) A microRNA guide for clinicians and basic scientists: background and experimental techniques. Heart Lung Circ 21(3):131–142. https://doi.org/10.1016/j.hlc.2011.11.002

    Article  CAS  Google Scholar 

  14. Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S (2012) Inhibition of microRNA function by antimiR oligonucleotides. Silence 3(1):1–1. https://doi.org/10.1186/1758-907X-3-1

    Article  CAS  Google Scholar 

  15. Seeger T, Fischer A, Muhly-Reinholz M, Zeiher AM, Dimmeler S (2014) Long-term inhibition of miR-21 leads to reduction of obesity in db/db mice. Obesity (Silver Spring) 22(11):2352–2360. https://doi.org/10.1002/oby.20852

    Article  CAS  Google Scholar 

  16. Jia X, Zheng S, Xie X, Zhang Y, Wang W, Wang Z, Zhang Y, Wang J, Gao M, Hou Y (2013) MicroRNA-1 accelerates the shortening of atrial effective refractory period by regulating KCNE1 and KCNB2 expression: an atrial tachypacing rabbit model. PLoS One 8(12):e85639. https://doi.org/10.1371/journal.pone.0085639

    Article  CAS  Google Scholar 

  17. Anastasiadou E, Seto AG, Beatty X, Hermreck M, Gilles M-E, Stroopinsky D, Pinter-Brown LC, Pestano L, Marchese C, Avigan D, Trivedi P, Escolar DM, Jackson AL, Slack FJ (2021) Cobomarsen, an oligonucleotide inhibitor of miR-155, slows DLBCL tumor cell growth in vitro and in vivo. Clin Cancer Res 27(4):1139–1149. https://doi.org/10.1158/1078-0432.Ccr-20-3139

    Article  CAS  Google Scholar 

  18. Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM, Slack FJ (2012) Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci 109(26):E1695–E1704. https://doi.org/10.1073/pnas.1201516109

    Article  Google Scholar 

  19. Javanbakht H, Mueller H, Walther J, Zhou X, Lopez A, Pattupara T, Blaising J, Pedersen L, Albæk N, Jackerott M, Shi T, Ploix C, Driessen W, Persson R, Ravn J, Young JAT, Ottosen S (2018) Liver-targeted anti-HBV single-stranded oligonucleotides with locked nucleic acid potently reduce HBV gene expression in vivo. Molecular Therapy - Nucleic Acids 11:441–454. https://doi.org/10.1016/j.omtn.2018.02.005

    Article  CAS  Google Scholar 

  20. Sun Z, Xiang W, Guo Y, Chen Z, Liu W, Lu D (2011) Inhibition of hepatitis B virus (HBV) by LNA-mediated nuclear interference with HBV DNA transcription. Biochem Biophys Res Commun 409:430–435. https://doi.org/10.1016/j.bbrc.2011.05.016

    Article  CAS  Google Scholar 

  21. Rogg EM, Abplanalp WT, Bischof C, John D, Schulz MH, Krishnan J, Fischer A, Poluzzi C, Schaefer L, Bonauer A, Zeiher AM, Dimmeler S (2018) Analysis of cell type-specific effects of MicroRNA-92a provides novel insights into target regulation and mechanism of action. Circulation 138(22):2545–2558. https://doi.org/10.1161/circulationaha.118.034598

    Article  CAS  Google Scholar 

  22. Bernardo BC, Gao X-M, Winbanks CE, Boey EJH, Tham YK, Kiriazis H, Gregorevic P, Obad S, Kauppinen S, Du X-J, Lin RCY, McMullen JR (2012) Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci 109(43):17615–17620. https://doi.org/10.1073/pnas.1206432109

    Article  Google Scholar 

  23. Bernardo BC, Nguyen SS, Winbanks CE, Gao XM, Boey EJ, Tham YK, Kiriazis H, Ooi JY, Porrello ER, Igoor S, Thomas CJ, Gregorevic P, Lin RC, Du XJ, McMullen JR (2014) Therapeutic silencing of miR-652 restores heart function and attenuates adverse remodeling in a setting of established pathological hypertrophy. FASEB J 28(12):5097–5110. https://doi.org/10.1096/fj.14-253856

    Article  CAS  Google Scholar 

  24. Bernardo BC, Gao XM, Tham YK, Kiriazis H, Winbanks CE, Ooi JY, Boey EJ, Obad S, Kauppinen S, Gregorevic P, Du XJ, Lin RC, McMullen JR (2014) Silencing of miR-34a attenuates cardiac dysfunction in a setting of moderate, but not severe, hypertrophic cardiomyopathy. PLoS One 9(2):e90337. https://doi.org/10.1371/journal.pone.0090337

    Article  CAS  Google Scholar 

  25. Gabisonia K, Prosdocimo G, Aquaro GD, Carlucci L, Zentilin L, Secco I, Ali H, Braga L, Gorgodze N, Bernini F, Burchielli S, Collesi C, Zandonà L, Sinagra G, Piacenti M, Zacchigna S, Bussani R, Recchia FA, Giacca M (2019) MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 569(7756):418–422. https://doi.org/10.1038/s41586-019-1191-6

    Article  CAS  Google Scholar 

  26. Banovic M, Ostojic MC, Bartunek J, Nedeljkovic M, Beleslin B, Terzic A (2011) Brachial approach to NOGA-guided procedures: electromechanical mapping and transendocardial stem-cell injections. Tex Heart Inst J 38(2):179–182

    Google Scholar 

  27. Hinkel R, Ramanujam D, Kaczmarek V, Howe A, Klett K, Beck C, Dueck A, Thum T, Laugwitz K-L, Maegdefessel L, Weber C, Kupatt C, Engelhardt S (2020) AntimiR-21 prevents myocardial dysfunction in a pig model of ischemia/reperfusion injury. J Am Coll Cardiol 75(15):1788–1800. https://doi.org/10.1016/j.jacc.2020.02.041

    Article  CAS  Google Scholar 

  28. Hinkel R, Batkai S, Bähr A, Bozoglu T, Straub S, Borchert T, Viereck J, Howe A, Hornaschewitz N, Oberberger L, Jurisch V, Kozlik-Feldmann R, Freudenthal F, Ziegler T, Weber C, Sperandio M, Engelhardt S, Laugwitz KL, Moretti A, Klymiuk N, Thum T, Kupatt C (2021) AntimiR-132 attenuates myocardial hypertrophy in an animal model of percutaneous aortic constriction. J Am Coll Cardiol 77(23):2923–2935. https://doi.org/10.1016/j.jacc.2021.04.028

    Article  CAS  Google Scholar 

  29. Hinkel R, Kupatt C (2017) Selective pressure-regulated Retroinfusion for gene therapy application in ischemic heart disease. Methods Mol Biol 1521:249–260. https://doi.org/10.1007/978-1-4939-6588-5_18

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabea Hinkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Samolovac, S., Hinkel, R. (2022). Locked Nucleic Acid AntimiR Therapy for the Heart. In: Ishikawa, K. (eds) Cardiac Gene Therapy. Methods in Molecular Biology, vol 2573. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2707-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2707-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2706-8

  • Online ISBN: 978-1-0716-2707-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics