Skip to main content

Culture of Human Retinal Explants for Ex Vivo Assessment of AAV Gene Delivery

  • Protocol
  • First Online:
Retinitis Pigmentosa

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2560))

Abstract

Due to the clinically established safety and efficacy profile of recombinant adeno-associated viral (rAAV) vectors, they are considered the “go to” vector for retinal gene therapy. Design of a rAAV-mediated gene therapy focuses on cell tropism, high transduction efficiency, and high transgene expression levels to achieve the lowest therapeutic treatment dosage and avoid toxicity. Human retinal explants are a clinically relevant model system for exploring these aspects of rAAV-mediated gene delivery. In this chapter, we describe an ex vivo human retinal explant culture protocol to evaluate transgene expression in order to determine the selectivity and efficacy of rAAV vectors for human retinal gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Murali A et al (2019) Retinal explant culture: a platform to investigate human neuro-retina. Clin Exp Ophthalmol 47(2):274–285

    Article  Google Scholar 

  2. FDA approves novel gene therapy to treat patients with a rare form of inherited vision loss. 2017 [cited 2020 04-25-2020]; Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-novel-gene-therapy-treat-patients-rare-form-inherited-vision-loss

  3. New gene therapy for rare inherited disorder causing vision loss recommended for approval. 2018 [cited 2020 04-25-2020]; Available from: https://www.ema.europa.eu/en/news/new-gene-therapy-rare-inherited-disorder-causing-vision-loss-recommended-approval

  4. Alves, C. and J. Wijnholds, AAV-mediated gene therapy for CRB1-hereditary retinopathies.. Intechopen, 2018

    Google Scholar 

  5. Castle MJ et al (2016) Controlling AAV tropism in the nervous system with natural and engineered capsids. Methods Mol Biol 1382:133–149

    Article  CAS  Google Scholar 

  6. Le Bras A (2019) A look at AAV toxicity in the mouse. Lab Animal 48,142.

    Google Scholar 

  7. Pillay S et al (2016) An essential receptor for adeno-associated virus infection. Nature 530(7588):108–112

    Article  CAS  Google Scholar 

  8. Dudek AM et al (2020) GPR108 is a highly conserved AAV entry factor. Mol Ther 28(2):367–381

    Article  CAS  Google Scholar 

  9. Wu Z et al (2006) Alpha2,3 and alpha2,6 N-linked sialic acids facilitate efficient binding and transduction by adeno-associated virus types 1 and 6. J Virol 80(18):9093–9103

    Article  CAS  Google Scholar 

  10. Kaludov N et al (2001) Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J Virol 75(15):6884–6893

    Article  CAS  Google Scholar 

  11. Bainbridge JW et al (2015) Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med 372(20):1887–1897

    Article  Google Scholar 

  12. Rabinowitz J, Chan YK, Samulski RJ (2019) Adeno-associated virus (AAV) versus immune response. Viruses 11(2):102.

    Google Scholar 

  13. Powell SK, Rivera-Soto R, Gray SJ (2015) Viral expression cassette elements to enhance transgene target specificity and expression in gene therapy. Discov Med 19(102):49–57

    Google Scholar 

  14. Patricio MI et al (2017) Inclusion of the woodchuck hepatitis virus posttranscriptional regulatory element enhances AAV2-driven transduction of mouse and human retina. Mol Ther Nucl Acids 6:198–208

    Article  CAS  Google Scholar 

  15. Fernandez-Bueno I et al (2012) Time course modifications in organotypic culture of human neuroretina. Exp Eye Res 104:26–38

    Article  CAS  Google Scholar 

  16. Osborne A et al (2016) Human organotypic retinal cultures (HORCs) as a chronic experimental model for investigation of retinal ganglion cell degeneration. Exp Eye Res 143:28–38

    Article  CAS  Google Scholar 

  17. Murali A et al (2020) Characterisation and validation of the 8-fold quadrant dissected human retinal explant culture model for pre-clinical toxicology investigation. Toxicol In Vitro 63:104716

    Article  CAS  Google Scholar 

  18. Fradot M et al (2011) Gene therapy in ophthalmology: validation on cultured retinal cells and explants from postmortem human eyes. Hum Gene Ther 22(5):587–593

    Article  CAS  Google Scholar 

  19. Tolmachova T et al (2013) Functional expression of Rab escort protein 1 following AAV2-mediated gene delivery in the retina of choroideremia mice and human cells ex vivo. J Mol Med (Berl) 91(7):825–837

    Article  CAS  Google Scholar 

  20. De Silva SR et al (2016) Single residue AAV capsid mutation improves transduction of photoreceptors in the Abca4(−/−) mouse and bipolar cells in the rd1 mouse and human retina ex vivo. Gene Ther 23(11):767–774

    Article  Google Scholar 

  21. Hickey DG et al (2017) Tropism of engineered and evolved recombinant AAV serotypes in the rd1 mouse and ex vivo primate retina. Gene Ther 24(12):787–800

    Article  CAS  Google Scholar 

  22. Quinn PM et al (2019) Human iPSC-derived retinas recapitulate the fetal CRB1 CRB2 complex formation and demonstrate that photoreceptors and Muller glia are targets of AAV5. Stem Cell Rep 12(5):906–919

    Article  CAS  Google Scholar 

  23. Khabou H et al (2018) Noninvasive gene delivery to foveal cones for vision restoration. JCI Insight 3(2): e96029.

    Google Scholar 

  24. Wiley LA et al (2018) Assessment of adeno-associated virus serotype tropism in human retinal explants. Hum Gene Ther 29(4):424–436

    Article  CAS  Google Scholar 

  25. Maeder ML et al (2019) Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med 25(2):229–233

    Article  CAS  Google Scholar 

  26. Single ascending dose study in participants with LCA10. Allergan 2020; Available from: Editas Medicine, Inc.

    Google Scholar 

  27. Cabral T et al (2017) Dissection of human retina and RPE-choroid for proteomic analysis. J Vis Exp (129): 56203.

    Google Scholar 

  28. Hughes JM et al (2010) Active HIF-1 in the normal human retina. J Histochem Cytochem 58(3):247–254

    Article  CAS  Google Scholar 

  29. Breazzano MP et al (2016) Vitreomacular attachment ultrastructure and histopathological correlation. Curr Eye Res 41(8):1098–1104

    Article  Google Scholar 

Download references

Acknowledgement

S.H.T. and Jonas Children's Vision Care is supported by the National Institute of Health 5P30CA013696, U01 EY030580, U54OD020351, R24EY028758, R24EY027285, 5P30EY019007, R01EY018213, R01EY024698, R01EY026682, R21AG050437, the Schneeweiss Stem Cell Fund, New York State [SDHDOH01-C32590GG-3450000], the Foundation Fighting Blindness New York Regional Research Center Grant [TA-NMT-0116-0692-COLU], Nancy & Kobi Karp, the Crowley Family Funds, The Rosenbaum Family Foundation, Alcon Research Institute, the Gebroe Family Foundation, the Research to Prevent Blindness (RPB) Physician-Scientist Award, unrestricted funds from RPB, New York, NY, USA. P.M.J.Q. is the current recipient of a Curing Retinal Blindness Foundation (CRBF) grant, a Knights Templar Eye Foundation (KTEF) Career Starter grant, the International Retinal Research Foundation (IRRF) Loris and David Rich Postdoctoral Scholar Award and a New York Stem Cell Foundation (NYSCF)—Druckenmiller Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. J. Quinn .

Editor information

Editors and Affiliations

Ethics declarations

Stephen H. Tsang receives financial support from Abeona Therapeutics, Inc and Emendo. He is also the founder of Rejuvitas and is on the scientific and clinical advisory board for Nanoscope Therapeutics. Peter M.J. Quinn receives research support from Rejuvitas, Inc.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wu, WH. et al. (2023). Culture of Human Retinal Explants for Ex Vivo Assessment of AAV Gene Delivery. In: Tsang, S.H., Quinn, P.M. (eds) Retinitis Pigmentosa. Methods in Molecular Biology, vol 2560. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2651-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2651-1_28

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2650-4

  • Online ISBN: 978-1-0716-2651-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics