Skip to main content

CRISPR-Mediated Genome Engineering in Cell Lines

  • Protocol
  • First Online:
Retinitis Pigmentosa

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2560))

Abstract

A specific targeting nuclease is a powerful tool for mediating genome alternative expression with high precision. The RNA sequence-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system can be used to facilitate genome engineering in cells by using a 20-nt targeting sequence. In this chapter, we describe a set of tools for Cas9-mediated genome editing via non-homologous end joining (NHEJ) or homology-directed repair (HDR) in the generation of modified cell lines for downstream functional studies. This protocol provides experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency, and analysis of off-target activity. Beginning with target design, we will cover gene modifications and modified clonal cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278

    Article  CAS  Google Scholar 

  2. Deveau H, Garneau JE, Moineau S (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64:475–493

    Article  CAS  Google Scholar 

  3. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170

    Article  CAS  Google Scholar 

  4. Garneau JE et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67–71

    Article  CAS  Google Scholar 

  5. Makarova KS et al (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9(6):467–477

    Article  CAS  Google Scholar 

  6. Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322(5909):1843–1845

    Article  CAS  Google Scholar 

  7. Brouns SJ et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321(5891):960–964

    Article  CAS  Google Scholar 

  8. Barrangou R et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    Article  CAS  Google Scholar 

  9. Sapranauskas R et al (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39(21):9275–9282

    Article  CAS  Google Scholar 

  10. Magadan AH et al (2012) Cleavage of phage DNA by the Streptococcus thermophilus CRISPR3-Cas system. PLoS One 7(7):e40913

    Article  CAS  Google Scholar 

  11. Gasiunas G et al (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109(39):E2579–E2586

    Article  CAS  Google Scholar 

  12. Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  Google Scholar 

  13. Zhang Y et al (2013) Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell 50(4):488–503

    Article  CAS  Google Scholar 

  14. Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  Google Scholar 

  15. Mali P et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  CAS  Google Scholar 

  16. Jinek M et al (2013) RNA-programmed genome editing in human cells. elife 2:e00471

    Article  Google Scholar 

  17. Hwang WY et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229

    Article  CAS  Google Scholar 

  18. Wang H et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918

    Article  CAS  Google Scholar 

  19. Shen B et al (2013) Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res 23(5):720–723

    Article  CAS  Google Scholar 

  20. Ran FA et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389

    Article  CAS  Google Scholar 

  21. Qi LS et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183

    Article  CAS  Google Scholar 

Download references

Acknowledgments

National Cancer Institute Core (5P30CA013696), Foundation Fighting Blindness (TA-NMT-0116-0692-COLU), and New York State (C029572).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen H. Tsang .

Editor information

Editors and Affiliations

Ethics declarations

Stephen H. Tsang receives grant support from Abeona Therapeutics, Inc and Emendo. He is also the founder of Rejuvitas and is on the scientific and clinical advisory board for Nanoscope Therapeutics and Medical Excellence Capital.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chang, YJ., Ryu, J., Cui, X., Tsang, S.H. (2023). CRISPR-Mediated Genome Engineering in Cell Lines. In: Tsang, S.H., Quinn, P.M. (eds) Retinitis Pigmentosa. Methods in Molecular Biology, vol 2560. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2651-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2651-1_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2650-4

  • Online ISBN: 978-1-0716-2651-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics