Skip to main content

Genetics of FASD: Confounding Rare Craniofacial and Neurodevelopmental Disorders May Identify Ethanol-Sensitizing Genetic Variants of FASD

  • Protocol
  • First Online:
Fetal Alcohol Spectrum Disorder

Part of the book series: Neuromethods ((NM,volume 188))

Abstract

Fetal alcohol spectrum disorder (FASD) is a clinically diverse teratogenic disorder with many underlying contributing risk factors including other environmental influences and temporal, epigenetic, and genetic factors. Twin studies of children with FASD have established a genetic component to the disorder; however, identifying which genes and their variants contribute to the pathogenesis of this complex and common disorder remains elusive. In this chapter, we highlight the genetic determinants of rare neurodevelopmental disorders that share overlapping clinical phenotypes to FASD, including CHARGE, Aarskog, Smith-Lemli-Optiz, Opitz-Kaveggia, Campomelic dysplasia, Noonan, Cornelia de Lange, and 22q11.2 deletion syndrome (DS). We hypothesize that by examining the genetic determinants of these rare developmental disorders, we can identify potential prenatal alcohol exposure susceptibility genes of FASD. Indeed, our investigation identified many specific candidate genes in neurodevelopmental signaling pathways that are well established in animal models of FASD-like outcomes following prenatal alcohol exposure, including those in the RAS/MAPK, Wnt/Ca2+, SHH, cholesterol, and retinoic acid pathways. Our findings support the notion that causative alleles of these rare developmental disorders may be sensitizing to prenatal alcohol exposure outcomes as seen in FASD. Sensitization by prenatal alcohol exposure could result in a direct functional modulation of protein activity or induction of an epigenetic modulation of candidate gene expression and define new underlying etiologies of FASD. Moreover, the frequency of PAE-sensitizing variants should be enriched in children with FASD and may provide new FASD diagnostic biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

22q11.2DS :

22q11.2 Deletion syndrome

7-DHC:

7-dehydrocholestrol

BMP:

Bone morphogenetic protein

Ca2+:

Calcium

CamK:

Calcium and calmodulin-dependent kinase

CAV:

Caveolin

CdLS :

Cornelia de Lange syndrome

FASD :

Fetal alcohol spectrum disorder

FGF:

Fibroblast growth factor

LCR:

Low-copy number repeats

MED :

Mammalian mediator complex

NCC :

Neural crest cells

NS :

Noonan syndrome

PAE :

Prenatal alcohol exposure

PTCH:

Patched

RA :

Retinoic acid

RAR:

Retinoic acid receptor

SHH :

Sonic hedgehog

SLOS :

Smith-Lemli-Opitz syndrome

SMO:

Smoothened

TGF-β:

Transforming growth factor β

WNT :

Wingless/integrated

References

  1. May PA, Chambers CD, Kalberg WO et al (2018) Prevalence of fetal alcohol spectrum disorders in 4 US communities. JAMA 319:474–482. https://doi.org/10.1001/jama.2017.21896

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhang X, Sliwowska JH, Weinberg J (2005) Prenatal alcohol exposure and fetal programming: effects on neuroendocrine and immune function. Exp Biol Med 230:376–388. https://doi.org/10.1177/15353702-0323006-05

    Article  CAS  Google Scholar 

  3. Mattson S et al (2011) Fetal alcohol spectrum disorders: neuropsychological and behavioral features. Neuropsychol Rev 21:81–101. https://doi.org/10.1007/s11065-011-9167-9.Fetal

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pei J, Denys K, Hughes J, Rasmussen C (2011) Mental health issues in fetal alcohol spectrum disorder. J Ment Health 20:473–483. https://doi.org/10.3109/09638237.2011.577113

    Article  Google Scholar 

  5. Jones KL, Smith DW (1973) Recognition of the fetal alcohol syndrome in early infancy. Lancet 302:999–1001. https://doi.org/10.1016/S0140-6736(73)91092-1

    Article  CAS  PubMed  Google Scholar 

  6. Astley SJ (2000) Diagnosing the full Spectrum of fetal alcohol-exposed individuals: introducing the 4-digit diagnostic code. Alcohol Alcohol 35:400–410. https://doi.org/10.1093/alcalc/35.4.400

    Article  CAS  PubMed  Google Scholar 

  7. DeMyer W, Zeman WPC (1964) The face predicts the brain: diagnostic significance of median facial anomalies for holoprosencephaly (arhinencephaly). Pediatrics 34:256–263

    Article  CAS  PubMed  Google Scholar 

  8. Eberhart J, Parnell S (2016) The genetics of fetal alcohol spectrum disorders (FASD). Alcohol Clin Exp Res 40:1154–1165. https://doi.org/10.1111/acer.13066.The

    Article  PubMed  PubMed Central  Google Scholar 

  9. Streissguth AP, Dehaene P (1993) Fetal alcohol syndrome in twins of alcoholic mothers: concordance of diagnosis and IQ. Am J Med Genet 47:857–861. https://doi.org/10.1002/ajmg.1320470612

    Article  CAS  PubMed  Google Scholar 

  10. Chen Y, Ozturk NC, Ni L et al (2011) Strain differences in developmental vulnerability to alcohol exposure via embryo culture in mice. Alcohol Clin Exp Res 35:1293–1304. https://doi.org/10.1111/j.1530-0277.2011.01465.x

    Article  PubMed  PubMed Central  Google Scholar 

  11. Debelak KA, Smith SM (2000) Avian genetic background modulates the neural crest apoptosis induced by ethanol exposure. Alcohol Clin Exp Res 24:307–314. https://doi.org/10.1097/00000374-200003000-00008

    Article  CAS  PubMed  Google Scholar 

  12. Loucks E, Carvan MJ (2004) Strain-dependent effects of developmental ethanol exposure in zebrafish. Neurotoxicol Teratol 26:745–755. https://doi.org/10.1016/j.ntt.2004.06.017

    Article  CAS  PubMed  Google Scholar 

  13. McDonald-McGinn DM, Sullivan KE, Marino B et al (2015) 22Q11.2 deletion syndrome. Nat Rev Dis Prim 1. https://doi.org/10.1038/nrdp.2015.71

  14. Hemingway SJA, Bledsoe JM, Davies JK et al (2019) Twin study confirms virtually identical prenatal alcohol exposures can lead to markedly different fetal alcohol spectrum disorder outcomes- fetal genetics influences fetal vulnerability. Adv Pediatr Res 5:1–19. https://doi.org/10.24105/apr.201

    Article  Google Scholar 

  15. Yelin R, Schyr RBH, Kot H et al (2005) Ethanol exposure affects gene expression in the embryonic organizer and reduces retinoic acid levels. Dev Biol 279:193–204. https://doi.org/10.1016/j.ydbio.2004.12.014

    Article  CAS  PubMed  Google Scholar 

  16. Yelin R, Kot H, Yelin D, Fainsod A (2007) Early molecular effects of ethanol during vertebrate embryogenesis. Differentiation 75:393–403. https://doi.org/10.1111/j.1432-0436.2006.00147.x

    Article  CAS  PubMed  Google Scholar 

  17. Green ML, Singh AV, Yihzi Z et al (2007) Reprogramming of genetic networks during initiation of the Fetal Alcohol Syndrome. Dev Dyn 236:613–631

    Article  CAS  PubMed  Google Scholar 

  18. Hong M, Krauss RS (2012) Cdon mutation and fetal ethanol exposure synergize to produce midline signaling defects and holoprosencephaly spectrum disorders in mice. PLoS Genet 8. https://doi.org/10.1371/journal.pgen.1002999

  19. Garic A, Berres ME, Smith SM (2014) High-throughput transcriptome sequencing identifies candidate genetic modifiers of vulnerability to fetal alcohol spectrum disorders. Alcohol Clin Exp Res 38:1874–1882. https://doi.org/10.1111/acer.12457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kietzman HW, Everson JL, Sulik KK, Lipinski RJ (2014) The teratogenic effects of prenatal ethanol exposure are exacerbated by sonic hedgehog or Gli2 haploinsufficiency in the mouse the teratogenic effects of prenatal ethanol exposure are exacerbated by sonic hedgehog or Gli2 haploinsufficiency in the mouse. PLoS One. https://doi.org/10.1371/journal.pone.0089448

  21. Smith SM, Garic A, Flentke GR, Berres ME (2014) Neural crest development in fetal alcohol syndrome. Birth Defects Res C Embryo Today 102:210–220. https://doi.org/10.1002/bdrc.21078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sarmah S, Muralidharan P, Marrs JA (2016) Embryonic ethanol exposure dysregulates bmp and notch signaling, leading to persistent atrio-ventricular valve defects in zebrafish. PLoS One 11:1–28. https://doi.org/10.1371/journal.pone.0161205

    Article  Google Scholar 

  23. Petrelli B, Weinberg J, Hicks GG (2018) Effects of prenatal alcohol exposure (PAE): insights into FASD using mouse models of PAE. Biochem Cell Biol 96:131–147. https://doi.org/10.1139/bcb-2017-0280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ahlgren SC, Thakur V, Bronner-Fraser M (2002) Sonic hedgehog rescues cranial neural crest from cell death induced by ethanol exposure. Proc Natl Acad Sci U S A 99:10476–10481. https://doi.org/10.1073/pnas.162356199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Y, Yang H, Zdanowicz M et al (2007) Fetal alcohol exposure impairs hedgehog cholesterol modification and signaling. Lab Investig 87:231–240. https://doi.org/10.1038/labinvest.3700516

    Article  CAS  PubMed  Google Scholar 

  26. Aoto K, Shikata Y, Higashiyama D et al (2008) Fetal ethanol exposure activates protein kinase a and impairs Shh expression in prechordal mesendoderm cells in the pathogenesis of holoprosencephaly. Birth Defects Res A Clin Mol Teratol 82:224–231. https://doi.org/10.1002/bdra.20447

    Article  CAS  PubMed  Google Scholar 

  27. Serrano M, Han M, Brinez P, Linask KK (2010) Fetal alcohol syndrome: cardiac birth defects in mice and prevention with folate. Am J Obstet Gynecol 203:75.e7–75.e15. https://doi.org/10.1016/j.ajog.2010.03.017

    Article  CAS  Google Scholar 

  28. Muralidharan P, Sarmah S, Marrs JA (2015) Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement. Alcohol 49:149–163. https://doi.org/10.1016/j.alcohol.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  29. Zhang P, Wang G, Lin Z et al (2017) Alcohol exposure induces chick craniofacial bone defects by negatively affecting cranial neural crest development. Toxicol Lett 281:53–64. https://doi.org/10.1016/j.toxlet.2017.09.010

    Article  CAS  PubMed  Google Scholar 

  30. Shabtai Y, Fainsod A (2018) Competition between ethanol clearance and retinoic acid biosynthesis in the induction of fetal alcohol syndrome. Biochem Cell Biol 96:148–160. https://doi.org/10.1139/bcb-2017-0132

    Article  CAS  PubMed  Google Scholar 

  31. Chiang C, Litingtung Y, Lee E et al (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–413

    Article  CAS  PubMed  Google Scholar 

  32. Ming JE, Roessler E, Muenke M (1998) Human developmental disorders and the Sonic hedgehog pathway. Mol Med Today 4310:343–349

    Article  Google Scholar 

  33. Yamagishi C, Yamagishi H, Maeda J et al (2006) Sonic hedgehog is essential for first pharyngeal arch development. Pediatr Res 59:349–354. https://doi.org/10.1203/01.pdr.0000199911.17287.3e

    Article  CAS  PubMed  Google Scholar 

  34. Heyne GW, Melberg CG, Doroodchi P et al (2015) Definition of critical periods for hedgehog pathway antagonist-induced holoprosencephaly, cleft lip, and cleft palate. PLoS One 10:1–14, e0120517. https://doi.org/10.1371/journal.pone.0120517

    Article  CAS  Google Scholar 

  35. Dworkin S, Boglev Y, Owens H, Goldie SJ (2016) The role of sonic hedgehog in craniofacial patterning, morphogenesis and cranial neural crest survival. J Dev Biol 4:24. https://doi.org/10.3390/jdb4030024

    Article  PubMed Central  Google Scholar 

  36. Yamada Y, Nagase T, Nagase M, Koshima I (2005) Gene expression changes of sonic hedgehog signaling cascade in a mouse embryonic model of fetal alcohol syndrome. J Craniofac Surg 16:1055–1061

    Article  PubMed  Google Scholar 

  37. Gurdon JB, Bourillot P-Y (2001) Morphogen gradient interpretation. Nature 413:797–803

    Article  CAS  PubMed  Google Scholar 

  38. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810. https://doi.org/10.1146/annurev.cellbio.20.010403.113126

    Article  CAS  PubMed  Google Scholar 

  39. Arenzana FJ, Iii MJC, Aijón J et al (2006) Teratogenic effects of ethanol exposure on zebrafish visual system development. Neurotoxicol Teratol 28:342–348. https://doi.org/10.1016/j.ntt.2006.02.001

    Article  CAS  PubMed  Google Scholar 

  40. Muralidharan P, Sarmah S, Zhou FC, Marrs JA (2013) Fetal alcohol spectrum disorder (FASD) associated neural defects: complex mechanisms and potential therapeutic targets. Brain Sci 3:964–991. https://doi.org/10.3390/brainsci3020964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sarmah S, Marrs JA (2013) Complex cardiac defects after ethanol exposure during discrete cardiogenic events in zebrafish: prevention with folic acid. Dev Dyn 242:1184–1201. https://doi.org/10.1002/dvdy.24015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Swartz ME, Wells MB, Griffin M et al (2014) A screen of zebrafish mutants identifies ethanol-sensitive genetic loci. Alcohol Clin Exp Res 38:694–703. https://doi.org/10.1111/acer.12286

    Article  CAS  PubMed  Google Scholar 

  43. Ben LC, Fernandes Y, Eberhart JK (2016) Fishing for fetal alcohol spectrum disorders: zebrafish as a model for ethanol teratogenesis. Zebrafish 13:391–398. https://doi.org/10.1089/zeb.2016.1270

    Article  CAS  Google Scholar 

  44. Lauing KL, Roper PM, Nauer RK, Callaci JJ (2012) Acute alcohol exposure impairs fracture healing and deregulates β-catenin signaling in the fracture callus. Alcohol Clin Exp Res 36:2095–2103. https://doi.org/10.1111/j.1530-0277.2012.01830.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Garic A, Flentke GR, Amberger E et al (2011) CaMKII activation is a novel effector of alcohol’s neurotoxicity in neural crest stem/progenitor cells. J Neurochem 118:646–657. https://doi.org/10.1111/j.1471-4159.2011.07273.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reynolds K, Kumari P, Rincon LS et al (2019) Wnt signaling in orofacial clefts: crosstalk, pathogenesis and models. Dis Model Mech 12:dmm037051. https://doi.org/10.1242/dmm.037051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Johnson CS, Zucker RM, Sidney E et al (2007) Perturbation of retinoic acid (RA) –mediated limb development suggests a role for diminished RA signaling in the teratogenesis of ethanol. Birth Defects Res (Part A) 641:631–641. https://doi.org/10.1002/bdra.20385

    Article  CAS  Google Scholar 

  48. Marrs JA, Clendenon SG, Ratcliffe DR et al (2010) Zebrafish fetal alcohol syndrome model: effects of ethanol are rescued by retinoic acid supplement. Alcohol 44:707–715. https://doi.org/10.1016/j.alcohol.2009.03.004

    Article  CAS  PubMed  Google Scholar 

  49. Shabtai Y, Bendelac L, Jubran H et al (2018) Acetaldehyde inhibits retinoic acid biosynthesis to mediate alcohol teratogenicity. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-017-18719-7

    Article  CAS  Google Scholar 

  50. Xu Q, Kopp JB (2012) Retinoid and TGF-β families: crosstalk in development, neoplasia, immunity, and tissue repair. Semin Nephrol 32:287–294. https://doi.org/10.1016/j.semnephrol.2012.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Malgorzata S, Nowaczyk JM (2020) Smith-Lemli-Opitz syndrome summary. NIH Gene Rev 1–24

    Google Scholar 

  52. Zhou C, Chen J, Zhang X et al (2014) Prenatal ethanol exposure up-regulates the cholesterol transporters ATP-binding cassette A1 and G1 and reduces cholesterol levels in the developing rat. Brain 49:626–634. https://doi.org/10.1093/alcalc/agu049

    Article  CAS  Google Scholar 

  53. Jamuar SS, Picker JD, Stoler JM (2018) Utility of genetic testing in fetal alcohol spectrum disorder. J Pediatr 196:270–274.e1. https://doi.org/10.1016/j.jpeds.2017.12.046

    Article  PubMed  Google Scholar 

  54. Douzgou S, Breen C, Crow YJ et al (2012) Diagnosing fetal alcohol syndrome: new insights from newer genetic technologies. Arch Dis Child 97:812–817. https://doi.org/10.1136/archdischild-2012-302125

    Article  PubMed  Google Scholar 

  55. Abdelmalik N, Van Haelst M, Mancini G et al (2013) Diagnostic outcomes of 27 children referred by pediatricians to a genetics clinic in the Netherlands with suspicion of fetal alcohol spectrum disorders. Am J Med Genet Part A 161A:254–260. https://doi.org/10.1002/ajmg.a.35672

    Article  PubMed  Google Scholar 

  56. Qin Z, Su J, Li M et al (2020) Clinical and genetic analysis of CHD7 expands the genotype and phenotype of CHARGE syndrome. Front Genet 11:1–5. https://doi.org/10.3389/fgene.2020.00592

    Article  CAS  Google Scholar 

  57. Zentner GE, Layman WS, Martin DM, Scacheri PC (2010) Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome. Am J Med Genet A 152(A):674–686. https://doi.org/10.1002/ajmg.a.33323.Molecular

    Article  Google Scholar 

  58. Bouazoune K, Kingston RE (2012) Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders. PNAS 109:1–6. https://doi.org/10.1073/pnas.1213825109. www.pnas.org/cgi/doi/10.1073/pnas.1213825109

    Article  Google Scholar 

  59. Sarmah S, Srivastava R, Mcclintick JN et al (2020) Embryonic ethanol exposure alters expression of sox2 and other early transcripts in zebrafish, producing gastrulation defects. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-59043-x

    Article  CAS  Google Scholar 

  60. Engelen E, Akinci U, Bryne JC et al (2011) Sox2 cooperates with Chd7 to regulate genes that are mutated in human syndromes. Nat Genet 43:607–612. https://doi.org/10.1038/ng.825

    Article  CAS  PubMed  Google Scholar 

  61. Chrisman K, Kenney R, Comin J et al (2004) Gestational ethanol exposure disrupts the expression of FGF8 and sonic hedgehog during limb patterning. Birth Defects Res (Part A) Clin Mol Teratol 171:163–171. https://doi.org/10.1002/bdra.20019

    Article  CAS  Google Scholar 

  62. Yu T, Meiners LC, Danielsen K, et al (2013) Deregulated FGF and homeotic gene expression underlies cerebellar vermis hypoplasia in CHARGE syndrome. elife 2. https://doi.org/10.7554/eLife.01305

  63. Kot-Leibovich H, Fainsod A (2009) Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation. Dis Model Mech 2:295–305. https://doi.org/10.1242/dmm.001420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yao H, Hill SF, Skidmore JM et al (2018) CHD7 represses the retinoic acid synthesis enzyme ALDH1A3 during inner ear development. JCI Insight 3. https://doi.org/10.1172/JCI.INSIGHT.97440

  65. Balendran V, Skidmore JM, Ritter KE et al (2021) Chromatin remodeler CHD7 is critical for cochlear morphogenesis and neurosensory patterning. Dev Biol 477:11–21. https://doi.org/10.1016/j.ydbio.2021.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Higashida H, Yokoyama S, Huang J et al (2012) Neurochemistry international social memory, amnesia, and autism: brain oxytocin secretion is regulated by NAD + metabolites and single nucleotide polymorphisms of CD38. Neurochem Int 61:828–838. https://doi.org/10.1016/j.neuint.2012.01.030

    Article  CAS  PubMed  Google Scholar 

  67. Fujita K, Ogawa R, Kawawaki S, Ito K (2014) Roles of chromatin remodelers in maintenance mechanisms of multipotency of mouse trunk neural crest cells in the formation of neural crest-derived stem cells. Mech Dev 133:126–145. https://doi.org/10.1016/j.mod.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  68. Bajpai R, Chen DA, Rada-iglesias A et al (2010) CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 463:3–9. https://doi.org/10.1038/nature08733

    Article  CAS  Google Scholar 

  69. Jiang X, Zhou Y, Xian L, Chen W (2012) The mutation in Chd7 causes misexpression of Bmp4 and developmental defects in telencephalic midline. Am J Pathol 181:626–641. https://doi.org/10.1016/j.ajpath.2012.05.006

    Article  CAS  PubMed  Google Scholar 

  70. Feng W, Kawauchi D, Ko H et al (2017) Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat Commun 8. https://doi.org/10.1038/ncomms14758

  71. Parnell SE, O’Leary-Moore SK, Godin EA, Dehart DB, Johnson BW, Johnson GA, Styner MA, Sulik KK (2009) Magnetic resonance microscopy defines ethanol-induced brain abnormalities in prenatal mice: effects of acute insult on gestational day 8. Alcohol Clin Exp Res 33:1001–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Godin EA, O’Leary-Moore SK, Khan AA et al (2010) Magnetic resonance microscopy defines ethanol-induced brain abnormalities in prenatal mice: effects of acute insult on gestational day 7. Alcohol Clin Exp Res. https://doi.org/10.1111/j.1530-0277.2009.01071.x

  73. Gage PJ, Hurd EA, Martin DM (2015) Mouse models for the dissection of CHD7 functions in eye development and the molecular basis for ocular defects in CHARGE syndrome. IOVS 56:7923–7930. https://doi.org/10.1167/iovs.15-18069

    Article  CAS  Google Scholar 

  74. Dunty WC Jr, Zucker RM, Sulik KK (2002) Hindbrain and cranial nerve dysmorphogenesis result from acute maternal ethanol administration. Dev Neurosci 24:328–342

    Article  CAS  PubMed  Google Scholar 

  75. Randall V, Mccue K, Roberts C et al (2009) Great vessel development requires biallelic expression of Chd7 and Tbx1 in pharyngeal ectoderm in mice. J Clin Invest 119:3301–3310. https://doi.org/10.1172/JCI37561.some

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Asad Z, Pandey A, Babu A et al (2016) Rescue of neural crest-derived phenotypes in a zebrafish CHARGE model by Sox10 downregulation. Hum Mol Genet 25:3539–3554. https://doi.org/10.1093/hmg/ddw198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dunty WC, Zucker RM, Sulik K (2002) Hindbrain and cranial nerve dysmorphogenesis result from acute maternal ethanol administration. Dev Neurosci 7090:328–342. https://doi.org/10.1159/000066748

    Article  Google Scholar 

  78. Orrico A, Galli L, Obregon MG et al (2007) Unusually severe expression of craniofacial features in Aarskog-Scott syndrome due to a novel truncating mutation of the FGD1 gene. Am J Med Genet Part A 143A:58–63. https://doi.org/10.1002/ajmg.a.31562

    Article  CAS  PubMed  Google Scholar 

  79. Orrico A, Galli L, Clayton-Smith J, Fryns JP (2015) Clinical utility gene card for: Aarskog-Scott Syndrome (faciogenital dysplasia) – update 2015. Eur J Hum Genet 23:10–13. https://doi.org/10.1038/ejhg.2014.178

    Article  CAS  Google Scholar 

  80. Orrico A, Galli L, Cavaliere ML et al (2004) Phenotypic and molecular characterisation of the Aarskog-Scott syndrome: a survey of the clinical variability in light of FGD1 mutation analysis in 46 patients. Eur J Hum Genet 12:16–23. https://doi.org/10.1038/sj.ejhg.5201081

    Article  CAS  PubMed  Google Scholar 

  81. Gorski JL, Estrada L, Hu C, Liu Z (2000) Skeletal-specific expression of Fgd1 during bone formation and skeletal defects in faciogenital dysplasia (FGDY; Aarskog syndrome). Dev Dyn 586:573–586

    Article  Google Scholar 

  82. Estrada L, Caron E, Gorski JL (2001) Fgd1, the Cdc42 guanine nucleotide exchange factor responsible for faciogenital dysplasia, is localized to the subcortical actin cytoskeleton and Golgi membrane. Hum Mol Genet 10:485–496

    Article  CAS  PubMed  Google Scholar 

  83. Whitehead IP, Abe K, Gorski JL, Der CJ (1998) CDC42 and FGD1 cause distinct signaling and transforming activities. Mol Cell Biol 18:4689–4697. https://doi.org/10.1128/mcb.18.8.4689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zheng Y, Fischer DJ, Santos MF et al (1996) The faciogenital dysplasia gene product FGD1 functions as a Cdc42Hs-specific guanine-nucleotide exchange factor. J Biol Chem 271:33169–33172. https://doi.org/10.1074/jbc.271.52.33169

    Article  CAS  PubMed  Google Scholar 

  85. Liu Y, Jin Y, Li J et al (2013) Inactivation of Cdc42 in neural crest cells causes craniofacial and cardiovascular morphogenesis defects. Dev Biol 383:239–252. https://doi.org/10.1016/j.ydbio.2013.09.013

    Article  CAS  PubMed  Google Scholar 

  86. Carey MB, Matsumoto SG (1999) Spontaneous calcium transients are required for neuronal differentiation of murine neural crest. Dev Biol 215:298–313. https://doi.org/10.1006/dbio.1999.9433

    Article  CAS  PubMed  Google Scholar 

  87. Garic-stankovic A, Hernandez MR, Chiang PJ et al (2005) Ethanol triggers neural crest apoptosis through the selective activation of a pertussis toxin – sensitive G protein and a phospholipase Cbeta-dependent Ca2+ transient. Alcohol Clin Exp Res 29:1237–1246. https://doi.org/10.1097/01.ALC.0000172460.05756.D9

    Article  CAS  PubMed  Google Scholar 

  88. Carey MB, Matsumoto SG (2000) Calcium transient activity in cultured murine neural crest cells is regulated at the IP3 receptor. Brain Res 862:201–210. https://doi.org/10.1016/S0006-8993(00)02128-4

    Article  CAS  PubMed  Google Scholar 

  89. Fitzky BU, Witsch-Baumgartner M, Erdel M et al (1998) Mutations in the Δ7-sterol reductase gene in patients with the Smith-Lemli-Opitz syndrome. Proc Natl Acad Sci U S A 95:8181–8186. https://doi.org/10.1073/pnas.95.14.8181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nowaczyk MJM, Tan M, Hamid JS, Allanson JE (2012) Smith-Lemli-Opitz syndrome: objective assessment of facial phenotype. Am J Med Genet Part A 158(A):1020–1028. https://doi.org/10.1002/ajmg.a.35285

    Article  Google Scholar 

  91. Kline AD, Grados M, Sponseller P, Levy HP (2007) Natural history of aging in Cornelia de Lange syndrome. Am J Med Genet C Semin Med Genet 145C:248–260. https://doi.org/10.1002/ajmg.c.30137.Natural

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yu H, Patel SB (2005) Recent insights into the Smith-Lemli-Opitz syndrome. Clin Genet 68:383–391. https://doi.org/10.1111/j.1399-0004.2005.00515.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Battaile KP, Battaile BC, Merkens LS et al (2001) Carrier frequency of the common mutation IVS8-1G>C in DHCR7 and estimate of the expected incidence of Smith–Lemli–Opitz syndrome. Mol Genet Metab 72:67–71. https://doi.org/10.1006/mgme.2000.3103

    Article  CAS  PubMed  Google Scholar 

  94. Bailey BA, Sokol RJ (2011) Prenatal alcohol exposure and miscarriage, stillbirth, preterm delivery, and sudden infant death syndrome. Alcohol Res Health 34:86–91

    PubMed  PubMed Central  Google Scholar 

  95. Prabhu AV, Luu W, Sharpe LJ, Brown AJ (2016) Cholesterol-mediated degradation of 7-dehydrocholesterol reductase switches the balance from cholesterol to Vitamin D synthesis. J Biol Chem 291:8363–8376. https://doi.org/10.1074/jbc.M115.699546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zuin J, Franke V, van Ijcken WFJ et al (2014) A Cohesin-independent role for NIPBL at promoters provides insights in CdLS. PLoS Genet 10. https://doi.org/10.1371/journal.pgen.1004153

  97. Suzuki A, Ogata K, Yoshioka H et al (2020) Disruption of Dhcr7 and Insig1/2 in cholesterol metabolism causes defects in bone formation and homeostasis through primary cilium formation. Bone Res 8. https://doi.org/10.1038/s41413-019-0078-3

  98. Yusifov E, Dumoulin A, Stoeckli ET (2021) Investigating primary cilia during peripheral nervous system formation. Int J Mol Sci 22:1–20. https://doi.org/10.3390/ijms22063176

    Article  CAS  Google Scholar 

  99. Emmer BT, Maric D, Engman DM (2010) Molecular mechanisms of protein and lipid targeting to ciliary membranes. J Cell Sci 123:529–536. https://doi.org/10.1242/jcs.062968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Radhakrishnan A, Rohatgi R, Siebold C (2020) Cholesterol access in cellular membranes controls Hedgehog signaling. Nat Chem Biol 16:1303–1313. https://doi.org/10.1038/s41589-020-00678-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Goetz SC, Ocbina PJR, Anderson KV (2009) The primary cilium as a hedgehog signal transduction machine. Methods Cell Biol 94:199–222. https://doi.org/10.1016/S0091-679X(08)94010-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lipinski RJ, Godin EA, Leary-moore SKO et al (2010) Genesis of teratogen-induced holoprosencephaly in mice. Am J Med Genet Part C 42:29–42. https://doi.org/10.1002/ajmg.c.30239

    Article  Google Scholar 

  103. Smith TG, Laval S, Chen F et al (2014) Neural crest cell-specific inactivation of Nipbl or Mau2 during mouse development results in a late onset of craniofacial defects. Genesis 52:687–694. https://doi.org/10.1002/dvg.22780

    Article  CAS  PubMed  Google Scholar 

  104. Rubinato E, Rondeau S, Giuliano F et al (2020) MED12 missense mutation in a three-generation family. Clinical characterization of MED12-related disorders and literature review. Eur J Med Genet Genet 63:103768. https://doi.org/10.1016/j.ejmg.2019.103768

    Article  Google Scholar 

  105. Knuesel MT, Meyer KD, Bernecky C, Taatjes DJ (2009) The human CDK8 subcomplex is a molecular switch that controls mediator coactivator function. Genes Dev 23:439–451. https://doi.org/10.1101/gad.1767009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ding N, Zhou H, Esteve PO et al (2008) Mediator links epigenetic silencing of neuronal gene expression with X-linked mental retardation. Mol Cell 31:347–359. https://doi.org/10.1016/j.molcel.2008.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Donnio L, Bidon B, Hashimoto S et al (2017) MED12- related XLID disorders are dose-dependent of immediate early genes (IEGs) expression. Hum Mol Genet 26:2062–2075. https://doi.org/10.1093/hmg/ddx099

    Article  CAS  PubMed  Google Scholar 

  108. Wang H, Shen Q, Ye LH, Ye J (2013) MED12 mutations in human diseases. Protein Cell 4:643–646. https://doi.org/10.1007/s13238-013-3048-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mo X, Kowenz-Leutz E, Xu H, Leutz A (2004) Ras induces mediator complex exchange on C/EBPβ. Mol Cell 13:241–250. https://doi.org/10.1016/S1097-2765(03)00521-5

    Article  CAS  PubMed  Google Scholar 

  110. Pavri R, Lewis B, Kim TK et al (2005) PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of mediator. Mol Cell 18:83–96. https://doi.org/10.1016/j.molcel.2005.02.034

    Article  CAS  PubMed  Google Scholar 

  111. Csukasi F, Duran I, Zhang W et al (2019) Dominant-negative SOX9 mutations in campomelic dysplasia. Hum Mutat 40:2344–2352. https://doi.org/10.1002/humu.23888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Castori M, Bottillo I, Morlino S et al (2016) Variability in a three-generation family with Pierre Robin sequence, acampomelic campomelic dysplasia, and intellectual disability due to a novel ∼1 Mb deletion upstream of SOX9, and including KCNJ2 and KCNJ16. Birth Defects Res Part A Clin Mol Teratol 106:61–68. https://doi.org/10.1002/bdra.23463

    Article  CAS  Google Scholar 

  113. Jo A, Denduluri S, Zhang B et al (2014) The versatile functions of Sox9 in development, stem cells, and human diseases. Genes Dis 1:149–161. https://doi.org/10.1016/j.gendis.2014.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  114. Thouvenin B, Djadi-Prat J, Chalouhi C et al (2013) Developmental outcome in Pierre Robin sequence: a longitudinal and prospective study of a consecutive series of severe phenotypes. Am J Med Genet Part A 161:312–319. https://doi.org/10.1002/ajmg.a.35773

    Article  Google Scholar 

  115. Evans KN, Sie KC, Hopper RA et al (2011) Robin sequence: from diagnosis to development of an effective management plan. Pediatrics 127:936–948. https://doi.org/10.1542/peds.2010-2615

    Article  PubMed  PubMed Central  Google Scholar 

  116. Yasuda H, Do OC, Chen D et al (2017) A novel regulatory mechanism of type II collagen expression via a SOX9-dependent enhancer in intron 6. J Biol Chem 292:528–538. https://doi.org/10.1074/jbc.M116.758425

    Article  CAS  PubMed  Google Scholar 

  117. Lefebvre V, Huang W, Harley VR et al (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1 (II) collagen gene. Mol Cell Biol 17:2336–2346. https://doi.org/10.1128/mcb.17.4.2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ni Q, Tan Y, Zhang X et al (2015) Prenatal ethanol exposure increases osteoarthritis susceptibility in female rat offspring by programming a low-functioning IGF-1 signaling pathway. Sci Rep 5:1–13. https://doi.org/10.1038/srep14711

    Article  CAS  Google Scholar 

  119. Zhou G, Zheng Q, Engin F et al (2006) Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc Natl Acad Sci U S A 103:19004–19009. https://doi.org/10.1073/pnas.0605170103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. El Bouchikhi I, Belhassan K, Moufid FZ et al (2016) Noonan syndrome-causing genes: molecular update and an assessment of the mutation rate. Int J Pediatr Adolesc Med 3:133–142. https://doi.org/10.1016/j.ijpam.2016.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  121. Sinkala M, Nkhoma P, Mulder N, Martin DP (2021) Integrated molecular characterisation of the MAPK pathways in human cancers reveals pharmacologically vulnerable mutations and gene dependencies. Commun Biol 4. https://doi.org/10.1038/s42003-020-01552-6

  122. Rauen KA (2013) The RASopathies. Annu Rev Genomics Hum Genet 14:355–369. https://doi.org/10.1146/annurev-genom-091212-153523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bhambhani V, Muenke M (2014) Noonan syndrome. Am Fam Physician 89:37–43

    PubMed  PubMed Central  Google Scholar 

  124. Shaw AC, Kalidas K, Crosby AH et al (2007) The natural history of Noonan syndrome: a long-term follow-up study. Arch Dis Child 92:128–132. https://doi.org/10.1136/adc.2006.104547

    Article  CAS  PubMed  Google Scholar 

  125. Tidyman WE, Rauen KA (2009) The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev 19:230–236. https://doi.org/10.1016/j.gde.2009.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tartaglia M, Mehler EL, Goldberg R et al (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29:465–468. https://doi.org/10.1038/ng772

    Article  CAS  PubMed  Google Scholar 

  127. Sarkozy A, Digilio MC, Dallapiccola B (2008) Leopard syndrome. Orphanet J Rare Dis 3:1–8. https://doi.org/10.1186/1750-1172-3-13

    Article  Google Scholar 

  128. Nava C, Hanna N, Michot C et al (2007) Cardio-facio-cutaneous and Noonan syndromes due to mutations in the RAS/MAPK signalling pathway: genotype-phenotype relationships and overlap with Costello syndrome. J Med Genet 44:763–771. https://doi.org/10.1136/jmg.2007.050450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Nishi E, Mizuno S, Nanjo Y et al (2015) A novel heterozygous MAP2K1 mutation in a patient with Noonan syndrome with multiple lentigines. Am J Med Genet Part A 167:407–411. https://doi.org/10.1002/ajmg.a.36842

    Article  CAS  Google Scholar 

  130. Schmidt J, Ramis-Zaldivar JE, Nadeu F et al (2017) Mutations of MAP2K1 are frequent in pediatric-type follicular lymphoma and result in ERK pathway activation. Blood 130:323–327. https://doi.org/10.1182/blood-2017-03-776278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Allanson JE, Bohring A, Dorr H-G, Dufke A (2010) The face of Noonan syndrome: does phenotype predict genotype. Am J Med Genet A 152A:1960–1966. https://doi.org/10.1002/ajmg.a.33518

    Article  PubMed  PubMed Central  Google Scholar 

  132. Jaouadi H, Ben CA, Kraoua L et al (2019) A severe clinical phenotype of Noonan syndrome with neonatal hypertrophic cardiomyopathy in the second case worldwide with RAF1 S259Y neomutation. Genet Res (Camb) 101:e6. https://doi.org/10.1017/S0016672319000041

    Article  CAS  Google Scholar 

  133. Dinsmore CJ, Soriano P (2018) MAPK and PI3K signaling: at the crossroads of neural crest development. Dev Biol 444:S79–S97. https://doi.org/10.1016/j.ydbio.2018.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Parada C, Han D, Grimaldi A et al (2015) Disruption of the ERK/MAPK pathway in neural crest cells as a potential cause of Pierre Robin sequence. Co Biol 142:3734–3745. https://doi.org/10.1242/dev.125328

    Article  CAS  Google Scholar 

  135. Nakamura T, Gulick J, Pratt R, Robbins J (2009) Noonan syndrome is associated with enhanced pERK activity, the repression of which can prevent craniofacial malformations. PNAS 106:15436–15441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Newbern J, Zhong J, Wickramasinghe SR et al (2008) Mouse and human phenotypes indicate a critical conserved role for ERK2 signaling in neural crest development. PNAS 105:17115–17120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lipinski RJ, Hammond P, O’Leary-Moore SK et al (2012) Ethanol-induced face-brain dysmorphology patterns are correlative and exposure-stage dependent. PLoS One. https://doi.org/10.1371/journal.pone.0043067

  138. Higashiyama D, Saitsu H, Komada M et al (2007) Sequential developmental changes in holoprosencephalic mouse embryos exposed to ethanol during the gastrulation period. Birth Defects Res Part A Clin Mol Teratol 79:513–523. https://doi.org/10.1002/bdra.20367

    Article  CAS  Google Scholar 

  139. Krantz ID, McCallum J, DeScipio C, Kaur M (2004) Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat Genet 36:631–635. https://doi.org/10.1038/ng1364.Cornelia

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tonkin ET, Wang TJ, Lisgo S et al (2004) NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet 36:636–641. https://doi.org/10.1038/ng1363

    Article  CAS  PubMed  Google Scholar 

  141. Kline AD, Moss JF, Selicorni A et al (2018) Diagnosis and management of Cornelia de Lange syndrome: first international consensus statement. Nat Rev Genet 19:649–666. https://doi.org/10.1038/s41576-018-0031-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kaur M, Descipio C, Mccallum J et al (2005) Precocious sister chromatid separation (PSCS) in Cornelia de Lange syndrome. Am J Med Genet A 138:27–31. https://doi.org/10.1002/ajmg.a.30919.Precocious

    Article  PubMed  PubMed Central  Google Scholar 

  143. Rollins RA, Morcillo P, Dorsett D (1999) Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 152:577–593. https://doi.org/10.1093/genetics/152.2.577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jahnke P, Xu W, Wülling M et al (2008) The Cohesin loading factor NIPBL recruits histone deacetylases to mediate local chromatin modifications. Nucleic Acids Res 36:6450–6458. https://doi.org/10.1093/nar/gkn688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bhuiyan ZA, Klein M, Hammond P et al (2006) Genotype-phenotype correlations of 39 patients with Cornelia de Lange syndrome: the Dutch experience. J Med Genet 43:568–575. https://doi.org/10.1136/jmg.2005.038240

    Article  CAS  PubMed  Google Scholar 

  146. Selicorni A, Russo S, Gervasini C et al (2007) Clinical score of 62 Italian patients with Cornelia de Lange syndrome and correlations with the presence and type of NIPBL mutation. Clin Genet 72:98–108. https://doi.org/10.1111/j.1399-0004.2007.00832.x

    Article  CAS  PubMed  Google Scholar 

  147. Ansari M, Poke G, Ferry Q et al (2014) Genetic heterogeneity in Cornelia de Lange syndrome (CdLS) and CdLS-like phenotypes with observed and predicted levels of mosaicism. J Med Genet 51:659–668. https://doi.org/10.1136/jmedgenet-2014-102573

    Article  CAS  PubMed  Google Scholar 

  148. He J, Gu L, Zhang H, Zhou M (2011) Crosstalk between MYCN and MDM2-p53 signal pathways regulates tumor cell growth and apoptosis in neuroblastoma. Cell Cycle 10:2994–3002. https://doi.org/10.4161/cc.10.17.17118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Santos R, Kawauchi S, Jacobs RE et al (2016) Conditional creation and rescue of Nipbl-deficiency in mice reveals multiple determinants of risk for congenital heart defects. PLoS Biol 14:1–31. https://doi.org/10.1371/journal.pbio.2000197

    Article  CAS  Google Scholar 

  150. Kotch LE, Sulik KK (1992) Patterns of ethanol-induced cell death in the developing nervous system of mice; neural fold states through the time of anterior neural tube closure. Int J Devl Neurosci 10:273–279

    Article  CAS  Google Scholar 

  151. Chudley AE, Conry J, Cook JL et al (2005) Canadian guidelines for FASD. C Can Med Assoc J 172:S1–S21

    Article  Google Scholar 

  152. Motahari Z, Moody SA, Maynard TM, Lamantia A (2019) In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: are they all suspects? J Neurodev Disord 11:1–28

    Article  Google Scholar 

  153. Morrow BE, Emanuel DMMBS, Vermeesch JR, Scambler PJ (2018) Molecular genetics of 22q11.2 deletion syndrome. Am J Med Genet 176A:2070–2081. https://doi.org/10.1002/ajmg.a.40504

    Article  CAS  Google Scholar 

  154. Bonthius DJ, Goodlett CR, West JR (1988) Blood alcohol concentration and severity of microencephaly in neonatal rats depend on the pattern of alcohol administration. Alcohol 5:209–214. https://doi.org/10.1016/0741-8329(88)90054-7

    Article  CAS  PubMed  Google Scholar 

  155. Pierce DR, West JR (1986) Blood alcohol concentration: a critical factor for producing fetal alcohol effects. Alcohol 3:269–272

    Article  CAS  PubMed  Google Scholar 

  156. Yutzey KE (2010) DiGeorge syndrome, Tbx1, and retinoic acid signaling come full circle. Circ Res 106:630–632. https://doi.org/10.1161/CIRCRESAHA.109.215319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Maynard TM, Gopalakrishna D, Meechan DW et al (2013) 22q11 gene dosage establishes an adaptive range for sonic hedgehog and retinoic acid signaling during early development. Hum Mol Genet 22:300–312. https://doi.org/10.1093/hmg/dds429

    Article  CAS  PubMed  Google Scholar 

  158. Garg V, Yamagishi C, Hu T et al (2001) Tbx1, a DiGeorge syndrome candidate gene, is regulated by sonic hedgehog during pharyngeal arch development. Dev Biol 73:62–73. https://doi.org/10.1006/dbio.2001.0283

    Article  CAS  Google Scholar 

  159. Karpinski BA, Maynard TM, Fralish MS et al (2014) Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome. Dis Model Mech 7:245–257. https://doi.org/10.1242/dmm.012484

    Article  CAS  PubMed  Google Scholar 

  160. Corsten-Janssen N, Saitta SC, Hoefsloot LH et al (2013) More clinical overlap between 22q11.2 deletion syndrome and charge syndrome than often anticipated. Mol Syndromol 4:235–245. https://doi.org/10.1159/000351127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Tazumi S, Yabe S, Uchiyama H (2010) Paraxial T-box genes, Tbx6 and Tbx1, are required for cranial chondrogenesis and myogenesis. Dev Biol 346:170–180. https://doi.org/10.1016/j.ydbio.2010.07.028

    Article  CAS  PubMed  Google Scholar 

  162. George RM, Firulli AB (2021) Epigenetics and heart development. Front Cell Dev Biol 9:1–10. https://doi.org/10.3389/fcell.2021.637996

    Article  Google Scholar 

  163. Keverne EB (2015) Genomic imprinting, action, and interaction of maternal and fetal genomes. Proc Natl Acad Sci U S A 112:6834–6840. https://doi.org/10.1073/pnas.1411253111

    Article  CAS  PubMed  Google Scholar 

  164. Forstner AJ, Degenhardt F, Schratt G, Nöthen MM (2013) MicroRNAs as the cause of schizophrenia in 22q11.2 deletion carriers, and possible implications for idiopathic disease: a mini-review. Front Mol Neurosci 6:1–10. https://doi.org/10.3389/fnmol.2013.00047

    Article  CAS  Google Scholar 

  165. Suzuki HI, Young RA, Sharp PA (2017) Super-enhancer-mediated RNA processing revealed by integrative microRNA network analysis. Cell 168:1000–1014.e15. https://doi.org/10.1016/j.cell.2017.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Napoli C, Schiano C, Soricelli A (2019) Increasing evidence of pathogenic role of the Mediator (MED) complex in the development of cardiovascular diseases. Biochimie 165:1–8. https://doi.org/10.1016/j.biochi.2019.06.014

    Article  CAS  PubMed  Google Scholar 

  167. Huang P, Nedelcu D, Watanabe M et al (2016) Cellular cholesterol directly activates Smoothened in Hedgehog signaling. Cell 166:1176–1187. https://doi.org/10.1016/j.cell.2016.08.003.Cellular

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Che Y, Siprashvili Z, Kovalski JR et al (2019) KRAS regulation by small non-coding RNAs and SNARE proteins. Nat Commun 10. https://doi.org/10.1038/s41467-019-13106-4

  169. Motta M, Fidan M, Bellacchio E et al (2019) Dominant Noonan syndrome-causing LZTR1 mutations specifically affect the Kelch domain substrate-recognition surface and enhance RAS-MAPK signaling. Hum Mol Genet 28:1007–1022. https://doi.org/10.1093/hmg/ddy412

    Article  CAS  PubMed  Google Scholar 

  170. Abe T, Umeki I, Kanno SI et al (2020) LZTR1 facilitates polyubiquitination and degradation of RAS-GTPases. Cell Death Differ 27:1023–1035. https://doi.org/10.1038/s41418-019-0395-5

    Article  CAS  PubMed  Google Scholar 

  171. Bigenzahn JW, Collu GM, Kartnig F et al (2018) LZTR1 is a regulator of RAS ubiquitination and signaling. Science (80-) 362:1171–1177. https://doi.org/10.1126/science.aap8210

    Article  CAS  Google Scholar 

  172. Castel P, Cheng A, Cuevas-Navarro A et al (2019) RIT1 oncoproteins escape LZTR1-mediated proteolysis. Science (80-) 363:1226–1230. https://doi.org/10.1126/science.aav1444

    Article  CAS  Google Scholar 

  173. Cuevas-Navarro A, Van R, Cheng A et al (2021) The RAS GTPase RIT1 compromises mitotic fidelity through spindle assembly checkpoint suppression. Curr Biol 31:3915–3924.e9. https://doi.org/10.1016/j.cub.2021.06.030

    Article  CAS  PubMed  Google Scholar 

  174. Moutin E, Nikonenko I, Stefanelli T et al (2017) Palmitoylation of cdc42 promotes spine stabilization and rescues spine density deficit in a mouse model of 22q11.2 deletion syndrome. Cereb Cortex 27:3618–3629. https://doi.org/10.1093/cercor/bhw183

    Article  CAS  PubMed  Google Scholar 

  175. Cooper MK, Wassif CA, Krakowiak PA et al (2003) A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis. Nat Genet 33:508–513. https://doi.org/10.1038/ng1134

    Article  CAS  PubMed  Google Scholar 

  176. Alvarez JI, Dodelet-Devillers A, Kebir H et al (2011) The hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science (80-) 334:1727–1731. https://doi.org/10.1126/science.1206936

    Article  CAS  Google Scholar 

  177. Liebner S, Corada M, Bangsow T et al (2008) Wnt/β-catenin signaling controls development of the blood – brain barrier. J Cell Biol 183:409–417. https://doi.org/10.1083/jcb.200806024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Napoli E, Tassone F, Wong S et al (2015) Mitochondrial citrate transporter-dependent metabolic signature in the 22q11.2 deletion syndrome. J Biol Chem 290:23240–23253. https://doi.org/10.1074/jbc.M115.672360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kohn AD, Moon RT (2005) Wnt and calcium signaling: β-catenin-independent pathways. Cell Calcium 38:439–446. https://doi.org/10.1016/j.ceca.2005.06.022

    Article  CAS  PubMed  Google Scholar 

  180. Khan TA, Revah O, Gordon A et al (2020) Neuronal defects in a human cellular model of 22q11.2 deletion syndrome. Nat Med 26(12):1888–1898. Springer US

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Gao L, Gorski JL, Chen CS (2011) The Cdc42 guanine nucleotide exchange factor FGD1 regulates osteogenesis in human mesenchymal stem cells. Am J Pathol 178:969–974. https://doi.org/10.1016/j.ajpath.2010.11.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Rangamani P, Levy MG, Khan S, Oster G (2016) Paradoxical signaling regulates structural plasticity in dendritic spines. Proc Natl Acad Sci U S A 113:E5298–E5307. https://doi.org/10.1073/pnas.1610391113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Umeki I, Niihori T, Abe T et al (2019) Delineation of LZTR1 mutation-positive patients with Noonan syndrome and identification of LZTR1 binding to RAF1–PPP1CB complexes. Hum Genet 138:21–35. https://doi.org/10.1007/s00439-018-1951-7

    Article  CAS  PubMed  Google Scholar 

  184. Moon AM, Guris DL, Seo J et al (2006) Crkl deficiency disrupts Fgf8 signaling in a mouse model of 22q11 deletion syndromes. Dev Cell 10:71–80. https://doi.org/10.1016/j.devcel.2005.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zhu C, Chen C, Huang J et al (2015) SUMOylation at K 707 of DGCR8 controls direct function of primary microRNA. Nucleic Acids Res 43:7945–7960. https://doi.org/10.1093/nar/gkv741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Herbert KM, Pimienta G, Degregorio SJ et al (2013) Article phosphorylation of DGCR8 increases its intracellular stability and induces a progrowth miRNA profile. Cell Rep 5:1070–1081. https://doi.org/10.1016/j.celrep.2013.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Samuels IS, Karlo JC, Faruzzi AN et al (2008) Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci 28:6983–6995. https://doi.org/10.1523/JNEUROSCI.0679-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Badodi S, Dubuc A, Zhang X et al (2017) Convergence of BMI1 and CHD7 on ERK signaling in convergence of BMI1 and CHD7 on ERK signaling in medulloblastoma. Cell Rep 21:2772–2784. https://doi.org/10.1016/j.celrep.2017.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Jamadagni P, Breuer M, Schmeisser K et al (2021) Chromatin remodeller CHD7 is required for GABAergic neuron development by promoting PAQR 3 expression. EMBO Rep 22:1–18. https://doi.org/10.15252/embr.202050958

    Article  CAS  Google Scholar 

  190. Martinelli S, Krumbach OHF, Pantaleoni F et al (2018) Functional dysregulation of CDC42 causes diverse developmental phenotypes. Am J Hum Genet 102:309–320. https://doi.org/10.1016/j.ajhg.2017.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Deroanne CF, Hamelryckx D, Ho TTG et al (2005) Cdc42 downregulates MMP-1 expression by inhibiting the ERK1/2 pathway. J Cell Sci 118:1173–1183. https://doi.org/10.1242/jcs.01707

    Article  CAS  PubMed  Google Scholar 

  192. Filigheddu N, Gnocchi VF, Coscia M et al (2007) Gene targeting of Cdc42 and Cdc42GAP affirms the critical involvement of Cdc42 in filopodia induction, directed migration, and proliferation in primary mouse embryonic fibroblasts. Mol Biol Cell 18:986–994. https://doi.org/10.1091/mbc.E06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Villalobo A, Berchtold MW (2020) The role of calmodulin in tumor cell migration, invasiveness, and metastasis. Int J Mol Sci 21. https://doi.org/10.3390/ijms21030765

  194. Daniel EE, Cho WJ (2006) Caveolae and calcium handling, a review and a hypothesis. J Cell Mol Med 10:529–544

    Article  CAS  PubMed  Google Scholar 

  195. Furuchi T, Anderson RGW (1998) Cholesterol depletion of Caveolae causes hyperactivation of extracellular signal-related kinase (ERK)*. J Biol Chem 273:21099–21104. https://doi.org/10.1074/jbc.273.33.21099

    Article  CAS  PubMed  Google Scholar 

  196. Park JH, Han HJ (2009) Caveolin-1 plays important role in EGF-induced migration and proliferation of mouse embryonic stem cells: involvement of PI3K/Akt and ERK. Am J Physiol Cell Physiol 297:935–944. https://doi.org/10.1152/ajpcell.00121.2009

    Article  CAS  Google Scholar 

  197. Shikanai M, Yoshiaki V, Shikanai M et al (2018) Caveolin-1 promotes early neuronal maturation via caveolae-independent trafficking of N- cadherin and L1 Caveolin-1 promotes early neuronal maturation via caveolae-independent trafficking of N-cadherin and L1. iScience 7:53–67. https://doi.org/10.1016/j.isci.2018.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev 8:185–194. https://doi.org/10.1038/nrm2122

    Article  CAS  Google Scholar 

  199. Wang P, Weng J, Anderson RGW (2005) OSBP is a cholesterol-regulated scaffolding protein in control of ERK1/2 activation. Science (80-) 307:1472–1477

    Article  CAS  Google Scholar 

  200. Grande-garcía A, Echarri A, De Rooij J et al (2007) Caveolin-1 regulates cell polarization and directional migration through Src kinase and rho GTPases. J Cell Biol 177:683–694. https://doi.org/10.1083/jcb.200701006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Mao H, Diehl AM, Li YX (2009) Sonic hedgehog ligand partners with caveolin-1 for intracellular transport. Lab Investig 89:290–300. https://doi.org/10.1038/labinvest.2008.163

    Article  CAS  PubMed  Google Scholar 

  202. Dou X, Wilkemeyer MF, Menkari CE et al (2013) Mitogen-activated protein kinase modulates ethanol inhibition of cell adhesion mediated by the L1 neural cell adhesion molecule. PNAS 110:5683–5688. https://doi.org/10.1073/pnas.1221386110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lussier AA, Morin AM, MacIsaac JL et al (2018) DNA methylation as a predictor of fetal alcohol spectrum disorder. Clin Epigenetics 10:5. https://doi.org/10.1186/s13148-018-0439-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lussier AA, Bodnar TS, Weinberg J (2021) Intersection of epigenetic and immune alterations: implications for fetal alcohol spectrum disorder and mental health. Front Neurosci 15. https://doi.org/10.3389/fnins.2021.788630

  205. Wallén E, Auvinen P, Kaminen-Ahola N (2021) The effects of early prenatal alcohol exposure on epigenome and embryonic development. Genes (Basel) 12. https://doi.org/10.3390/genes12071095

  206. Alberry B, Laufer BI, Chater-Diehl E, Singh SM (2021) Epigenetic impacts of early life stress in fetal alcohol spectrum disorders shape the neurodevelopmental continuum. Front Mol Neurosci 14:1–17. https://doi.org/10.3389/fnmol.2021.671891

    Article  CAS  Google Scholar 

  207. Jongmans MCJ, Hoefsloot LH, Van Der Donk KP et al (2008) Familial CHARGE syndrome and the CHD7 gene: a recurrent missense mutation, intrafamilial recurrence and variability. Am J Med Genet 146A:43–50. https://doi.org/10.1002/ajmg.a

    Article  CAS  PubMed  Google Scholar 

  208. Pauli S, Bajpai R, Borchers A (2017) CHARGEd with neural crest defects. Am J Med Genet 175C:478–486. https://doi.org/10.1002/ajmg.c.31584

    Article  CAS  Google Scholar 

  209. Feng W, Shao C, Liu H (2017) Versatile roles of the chromatin remodeler CHD7 during brain development and disease. Front Mol Neurosci 10:1–8. https://doi.org/10.3389/fnmol.2017.00309

    Article  CAS  Google Scholar 

  210. Blake KD, Prasad C (2006) CHARGE syndrome. Orphanet J Rare Dis 1:1–8. https://doi.org/10.1186/1750-1172-1-34

    Article  Google Scholar 

  211. Liu Y, Balaraman Y, Wang G et al (2009) Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics 4:500–511. https://doi.org/10.4161/epi.4.7.9925

    Article  CAS  PubMed  Google Scholar 

  212. Resendiz M, Chen Y, Öztürk NC, Zhou FC (2013) Epigenetic medicine and fetal alcohol spectrum disorders. Epigenomics 5:73–86. https://doi.org/10.2217/epi.12.80

    Article  CAS  PubMed  Google Scholar 

  213. Guo Y, Monahan K, Wu H et al (2012) CTCF/cohesin-mediated DNA looping is required for protocadherin α promoter choice. Proc Natl Acad Sci U S A 109:21081–21086. https://doi.org/10.1073/pnas.1219280110

    Article  PubMed  PubMed Central  Google Scholar 

  214. Remeseiro S, Cuadrado A, Gómez-Lãpez G et al (2012) A unique role of cohesin-SA1 in gene regulation and development. EMBO J 31:2090–2102. https://doi.org/10.1038/emboj.2012.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Laufer BI, Kapalanga J, Castellani CA et al (2015) Associative DNA methylation changes in children with prenatal alcohol exposure. Epigenomics 7:1259–1274

    Article  CAS  PubMed  Google Scholar 

  216. Laufer BI, Chater-Diehl EJ, Kapalanga J, Singh SM (2017) Long-term alterations to DNA methylation as a biomarker of prenatal alcohol exposure: from mouse models to human children with fetal alcohol spectrum disorders. Alcohol 60:67–75. https://doi.org/10.1016/j.alcohol.2016.11.009

    Article  CAS  PubMed  Google Scholar 

  217. Cook JL, Green CR, Lilley CM et al (2016) Fetal alcohol spectrum disorder: a guideline for diagnosis across the lifespan. CMAJ 188:191–197

    Article  PubMed  PubMed Central  Google Scholar 

  218. Popova S, Lange S, Shield K et al (2016) Comorbidity of fetal alcohol spectrum disorder: a systematic review and meta-analysis. Lancet 387:978–987. https://doi.org/10.1016/S0140-6736(15)01345-8

    Article  PubMed  Google Scholar 

  219. Denny LA, Coles S, Blitz R (2017) Fetal alcohol syndrome and fetal alcohol Spectrum disorders. Am Fam Physician 96:515–522. https://doi.org/10.1002/0471695998.mgs020

    Article  PubMed  Google Scholar 

  220. Leibson T, Neuman G, Chudley AE, Koren G (2014) The differential diagnosis of fetal alcohol spectrum disorder. J Popul Ther Clin Pharmacol 21:1–30

    Google Scholar 

  221. Blanck-Lubarsch M, Dirksen D, Feldmann R et al (2019) Tooth malformations, dmft index, speech impairment and oral habits in patients with fetal alcohol syndrome. Int J Environ Res Public Health 16:1–12. https://doi.org/10.3390/ijerph16224401

    Article  Google Scholar 

  222. Blanck-Lubarsch M, Dirksen D, Feldmann R et al (2020) Children with fetal alcohol syndrome (FAS): 3D-analysis of palatal depth and 3D-metric facial length. Int J Environ Res Public Health 17. https://doi.org/10.3390/ijerph17010095

  223. Mcdonald-McGinn DM, Hain HS, Emanuel BS, Zackai EH (2021) 22q11.2 deletion syndrome. Nat Rev Dis Primers 1:15071

    Article  Google Scholar 

  224. Lewyllie A, Roosenboom J, Indencleef K et al (2017) A comprehensive craniofacial study of 22q11.2 deletion syndrome. J Dent Res 96:1386–1392. https://doi.org/10.1177/0022034517720630

    Article  CAS  PubMed  Google Scholar 

  225. Roberts AE, Allanson JE, Tartaglia M, Gelb BD (2013) Noonan syndrome. Lancet 381:333–342. https://doi.org/10.1016/S0140-6736(12)61023-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Unger S, Scherer G, Superti-Furga A (2008) Campomelic dysplasia. In: GeneReviews. https://www.ncbi.nlm.nih.gov/books/NBK1760/

    Google Scholar 

  227. Corbani S, Chouery E, Eid B et al (2011) Mild campomelic dysplasia: report on a case and review. Mol Syndromol 1:163–168. https://doi.org/10.1159/000322861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Roberts GL, Beiraghi S (1989) Dental abnormalities associated with campomelic syndrome: case report. Pediatr Dent 11:43–46

    CAS  PubMed  Google Scholar 

  229. Kline AD, Krantz ID, Sommer A et al (2007) Cornelia de Lange syndrome: clinical review, diagnostic and scoring systems, and anticipatory guidance. Am J Med Genet Part A Genet 143A:1287–1296. https://doi.org/10.1002/ajmg.a

    Article  Google Scholar 

  230. Kelley RI, Hennekam RCM (2000) The Smith-Lemli-Opitz syndrome. 321–335

    Google Scholar 

  231. Anthony B, Vinci-Booher S, Wetherill L et al (2010) Alcohol-induced facial dysmorphology in C57BL/6 mouse models of fetal alcohol spectrum disorder. Alcohol 44:659–671. https://doi.org/10.1016/j.alcohol.2010.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Kaminen-ahola N, Fahey P, Cox TC et al (2010) Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS One 6:1–10. https://doi.org/10.1371/journal.pgen.1000811

    Article  CAS  Google Scholar 

  233. Sowell ER, Mattson SN, Kan E et al (2008) Abnormal cortical thickness and brain-- behavior correlation patterns in individuals with heavy prenatal alcohol exposure. Cereb Cortex 18:136–144. https://doi.org/10.1093/cercor/bhm039

    Article  PubMed  Google Scholar 

  234. Jarmasz JS, Basalah DA, Chudley AE, Del Bigio MR (2017) Human brain abnormalities associated with prenatal alcohol exposure and fetal alcohol spectrum disorder. Neurophathol Exp Neurol 76:813–833. https://doi.org/10.1093/jnen/nlx064

    Article  Google Scholar 

  235. Coulter C, Leech R, Schaefer B et al (1993) Midline cerebral dysgenesis, dysfunction of the hypothalamic-pituitary axis, and fetal alcohol effects. Arch Neurol 50:771–775

    Article  CAS  PubMed  Google Scholar 

  236. Strömland K, Pinazo-Durán DM (2002) Invited review ophthalmic involvement in the fetal alcohol syndrome: clinical and animal model studies. Alcohol Alcohol 37:2–8

    Article  PubMed  Google Scholar 

  237. Church MW, Eldis F, Blakley BW, Bawle EV (1997) Hearing, language, speech, vestibular, and dentofacial disorders in fetal alcohol syndrome. Alcohol Clin Exp Res 21:227–237

    Article  CAS  PubMed  Google Scholar 

  238. Peiffer J, Majweski F, Fischbach H et al (1979) Alcohol embryo- and fetopathy: neuropathology of 3 children and 3 fetuses. J Neurol Sci 41:125–137

    Article  CAS  PubMed  Google Scholar 

  239. Kar P, Reynolds JE, Grohs MN et al (2021) White matter alterations in young children with prenatal alcohol exposure. Dev Neurobiol 00:1–11. https://doi.org/10.1002/dneu.22821

    Article  Google Scholar 

  240. Ghazi F, Mohammad S, Aarabi H, Haghshomar M (2019) White matter microstructure in fetal alcohol spectrum disorders: a systematic review of diffusion tensor imaging studies. Hum Brain Mapp 40:1017–1036. https://doi.org/10.1002/hbm.24409

    Article  Google Scholar 

  241. Hultman SC, Riski JE, Cohen SR et al (2000) Chiari malformation, cervical spine anomalies, and neurologic deficits in velocardiofacial syndrome. Plast Reconstr Surg 106:16–24

    Article  CAS  PubMed  Google Scholar 

  242. Campbell LE, Daly E, Toal F et al (2006) Brain and behaviour in children with 22q11.2 deletion syndrome: a volumetric and voxel-based morphometry MRI study. Brain 129:1218–1228. https://doi.org/10.1093/brain/awl066

    Article  PubMed  Google Scholar 

  243. Villalón-Reina J, Martínez K, Qu X et al (2020) Altered white matter microstructure in 22q11.2 deletion syndrome: a multisite diffusion tensor imaging study. Mol Psychiatry 25:2818–2831. https://doi.org/10.1038/s41380-019-0450-0

    Article  CAS  PubMed  Google Scholar 

  244. Rogdaki M, Gudbrandsen M, Mccutcheon RA, et al (2020) Magnitude and heterogeneity of brain structural abnormalities in 22q11.2 deletion syndrome: a meta-analysis. Mol Psychiatry 1704–1717. https://doi.org/10.1038/s41380-019-0638-3

  245. Fattah M, Raman MM, Reiss AL, Green T (2021) PTPN11 mutations in the Ras-MAPK signaling pathway affect human white matter microstructure. Cereb Cortex 31:1489–1499. https://doi.org/10.1093/cercor/bhaa299

    Article  PubMed  Google Scholar 

  246. Amico AD, Cipullo MB, Falco M et al (2021) Clinical report of a brain magnetic resonance imaging finding in Noonan syndrome. Childs Nerv Syst 37:3963–3966

    Article  PubMed  Google Scholar 

  247. Carcavilla A, Suárez-ortega L, Rodríguez A et al (2020) Noonan syndrome: genetic and clinical update and treatment options. An Pediatr 93. https://doi.org/10.1016/j.anpede.2020.04.009

  248. Allanson JE, Roberts AE (2019) Noonan syndrome. In: GeneReviews, pp 1–36

    Google Scholar 

  249. Hartill VL, Dillon MW, Warren DJ, Blyth M (2017) RAF1 -associated Noonan syndrome presenting antenatally with an abnormality of skull shape, subdural haematoma and associated with novel cerebral malformations. Clin Dysmorphol 26:101–106. https://doi.org/10.1097/MCD.0000000000000153

    Article  PubMed  Google Scholar 

  250. Shiohama T, Mcdavid J, Levman J, Takahashi E (2019) NeuroImage: clinical quantitative brain morphological analysis in CHARGE syndrome. NeuroImage Clin 23:101866. https://doi.org/10.1016/j.nicl.2019.101866

    Article  PubMed  PubMed Central  Google Scholar 

  251. van Ravenswaaij-Arts CM, Hefner M, Blake K, Martin DM (2020) CHD7 disorder summary genetic counseling GeneReview scope diagnosis suggestive findings. In: GeneReviews, pp 1–31

    Google Scholar 

  252. Lyonnet S, Rappaport R, Netchine I (2005) CHARGE syndrome includes hypogonadism and abnormal olfactory bulb development. J Clin Endocrinol Metab 90:5621–5626. https://doi.org/10.1210/jc.2004-2474

    Article  CAS  PubMed  Google Scholar 

  253. Hoch MJ, Patel SH, Jethanamest D et al (2017) Head and neck MRI findings in CHARGE syndrome. AJNR Am J Neuroradiol 38:2357–2363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Mansour S, Offiah AC, McDowall S et al (2002) The phenotype of survivors of campomelic dysplasia. J Med Genet 39:597–602. https://doi.org/10.1136/jmg.39.8.597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Matsumoto A, Imagawa E, Miyake N et al (2018) The presence of diminished white matter and corpus callosal thinning in a case with a SOX9 mutation. Brain and Development 40:325–329. https://doi.org/10.1016/j.braindev.2017.09.002

    Article  PubMed  Google Scholar 

  256. Whitehead MT, Nagaraj UD, Pearl PL (2015) Neuroimaging features of Cornelia de Lange syndrome. 1198–1205. https://doi.org/10.1007/s00247-015-3300-5

  257. Bottani A, Orrico A, Galli L, Karam O (2007) Unilateral focal Polymicrogyria in a patient with classical Aarskog – Scott syndrome due to a novel missense mutation in an evolutionary conserved RhoGEF domain of the faciogenital dysplasia gene FGD1. Am J Med Genet Part A 143A:2334–2338. https://doi.org/10.1002/ajmg.a

    Article  CAS  PubMed  Google Scholar 

  258. Shalev SA, Chervinski E, Weiner E et al (2006) Clinical variation of Aarskog syndrome in a large family with 2189delA in the FGD1 gene. Am J Med Genet 140A:162–165. https://doi.org/10.1002/ajmg.a

    Article  Google Scholar 

  259. Malgorzata S, Nowaczyk JM (2021) Smith-Lemli-Opitz syndrome

    Google Scholar 

  260. Lee RWY, Conley SK, Gropman A et al (2013) Brain magnetic resonance imaging findings in smith-lemli-opitz syndrome. Am J Med Genet Part A 161:2407–2419. https://doi.org/10.1002/ajmg.a.36096

    Article  Google Scholar 

  261. Maroni G (2022) X-linked opitz G/BBB syndrome

    Google Scholar 

  262. Graham JM Jr, Visootsak J, Dykens E et al (2008) Behavior of 10 patients with FG syndrome (Opitz – Kaveggia syndrome) and the p.R961W mutation in the MED12 gene. Am J Med Genet Part A 146A:3011–3017. https://doi.org/10.1002/ajmg.a.32553

    Article  PubMed  Google Scholar 

  263. Ozonoff S, Williams BJ, Rauch AM, Opitz JM (2000) Behavior phenotype of FG syndrome: cognition, personality, and behavior in eleven affected boys. Am J Med Genet 97:112–118

    Article  CAS  PubMed  Google Scholar 

  264. Cao W, Li W, Han H et al (2014) Prenatal alcohol exposure reduces magnetic susceptibility contrast and anisotropy in the white matter of mouse brains. NeuroImage. https://doi.org/10.1016/j.neuroimage.2014.08.035

  265. Stevens SA, Nash K, Koren G, Rovet J (2013) Autism characteristics in children with fetal alcohol spectrum disorders. Child Neuropsychol 19:579–587. https://doi.org/10.1080/09297049.2012.727791

    Article  PubMed  Google Scholar 

  266. Goril S, Zalai D, Scott L, Shapiro CM (2016) Sleep and melatonin secretion abnormalities in children and adolescents with fetal alcohol spectrum disorders. Sleep Med 23:59–64. https://doi.org/10.1016/j.sleep.2016.06.002

    Article  PubMed  Google Scholar 

  267. Hellemans KG, Verma P, Yoon E et al (2010) Prenatal alcohol exposure and chronic mild stress differentially alter depressive- and anxiety-like behaviors in male and female offspring. Alcohol Clin Exp Res 34:633–645

    Article  PubMed  PubMed Central  Google Scholar 

  268. Pierpont EI (2016) Neuropsychological functioning in individuals with Noonan syndrome: a systematic literature review with educational and treatment recommendations. J Pediatr Neuropsychol 14–33. https://doi.org/10.1007/s40817-015-0005-5

  269. Hartshorne TS, Stratton KK, Brown D, Schmittel SMMC (2017) Behavior in CHARGE syndrome. Am J Med Genet 175C:431–438. https://doi.org/10.1002/ajmg.c.31588

    Article  Google Scholar 

  270. Hartshorne TS, Cypher AD (2004) Challenging behavior in CHARGE syndrome timothy. Ment Heal Asp Dev Disabil 7:41–52

    Google Scholar 

  271. Wulffaert J, Scholte EM, Dijkxhoorn YM, Van Berckelaer-onnes IA (2009) Parenting stress in CHARGE syndrome and the relationship with child characteristics. J Dev Phys Disabil 21:301–313. https://doi.org/10.1007/s10882-009-9143-y

    Article  PubMed  PubMed Central  Google Scholar 

  272. Lee JJ, Thottam PJ, Ford MD, Jabbour N (2015) Characteristics of sleep apnea in infants with Pierre-Robin sequence: is there improvement with advancing age? Int J Pediatr Otorhinolaryngol 79:2059–2067. https://doi.org/10.1016/j.ijporl.2015.09.014

    Article  PubMed  Google Scholar 

  273. Giani L, Michelini G, Nobile M et al (2022) Behavioral markers of social anxiety in Cornelia de Lange syndrome: a brief systematic review. J Affect Disord 299:636–643. https://doi.org/10.1016/j.jad.2021.12.099

    Article  PubMed  Google Scholar 

  274. Kaname T, Yanagi K, Okamoto N, Naritomi K (2006) Neurobehavioral disorders in patients with Aarskog – Scott syndrome affected by novel FGD1 mutations. Am J Med Genet 140A:1331–1332. https://doi.org/10.1002/ajmg.a

    Article  Google Scholar 

  275. Hamzeh AR, Saif F, Nair P, et al (2017) A novel, putatively null, FGD1 variant leading to Aarskog-Scott syndrome in a family from UAE. BMC Pediatr 4–9. https://doi.org/10.1186/s12887-017-0781-4

  276. El Shawa H, Abbott CW, Huffman KJ (2013) Prenatal ethanol exposure disrupts intraneocortical circuitry, cortical gene expression, and behavior in a mouse model of FASD. J Neurosci 33:18893–18905. https://doi.org/10.1523/JNEUROSCI.3721-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Kleiber ML, Mantha K, Stringer RL, Singh SM (2013) Neurodevelopmental alcohol exposure elicits long-term changes to gene expression that alter distinct molecular pathways dependent on timing of exposure. J Neurodev Disord 5:6. https://doi.org/10.1186/1866-1955-5-6

    Article  PubMed  PubMed Central  Google Scholar 

  278. Kleiber ML, Wright E, Singh SM (2011) Maternal voluntary drinking in C57BL/6J mice: advancing a model for fetal alcohol spectrum disorders. Behav Brain Res 223:376–387. https://doi.org/10.1016/j.bbr.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  279. Caldwell KK, Sheema S, Paz RD et al (2008) Fetal alcohol spectrum disorder-associated depression: evidence for reductions in the levels of brain-derived neurotrophic factor in a mouse model. Pharmacol Biochem Behav 90:614–624. S0091-3057(08)00155-X [pii]. https://doi.org/10.1016/j.pbb.2008.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Kim M, Kogan N, Slack FJ (2016) Cis-acting elements in its 3’ UTR mediate post-transcriptional regulation of KRAS. Oncotarget 7:11770–11784. https://doi.org/10.18632/oncotarget.7599

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We wish to thank Abraham Fainsod, Songyan Liu, and Molly Pind for enlightening and provocative discussions over the years that contributed to this manuscript.

Funding

This work was funded in part by grants to GGH from the Canadian Institutes of Health Research (PJT-165847), Manitoba Liquor & Lotteries Corporation (55201 and 55380), and Kids Brain Health Network (48694) and to LM from the Kids Brain Health Network (54525).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey G. Hicks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

McKay, L., Petrelli, B., Chudley, A.E., Hicks, G.G. (2022). Genetics of FASD: Confounding Rare Craniofacial and Neurodevelopmental Disorders May Identify Ethanol-Sensitizing Genetic Variants of FASD. In: Chudley, A.E., Hicks, G.G. (eds) Fetal Alcohol Spectrum Disorder. Neuromethods, vol 188. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2613-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2613-9_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2612-2

  • Online ISBN: 978-1-0716-2613-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics